

Welcome to WDmodel’s documentation!

WDmodel: Bayesian inference of white dwarf properties from spectra and
photometry to establish spectrophotometric standards

WDmodel

Copyright 2017- Gautham Narayan (gsnarayan@gmail.com)

About

[image: Github Link] [http://github.com/gnarayan/WDmodel] [image: GPLv3 License] [http://www.gnu.org/licenses/gpl-3.0] [image: Documentation Status] [http://wdmodel.readthedocs.io/en/latest/?badge=latest]

WDmodel is a DA White Dwarf model atmosphere fitting code. It fits observed
spectrophotometry of DA White Dwarfs to infer intrinsic model atmosphere
parameters in the presence of dust and correlated spectroscopic flux
calibration errors, thereby determining full SEDs for the white dwarf. Its
primary scientific purpose is to establish a network of faint (V = 16.5–19
mag) standard stars, suitable for LSST and other wide-field photometric
surveys, and tied to HST and the CALSPEC system, defined by the three primary
standards, GD71, GD153 and G191B2B.

Click on the badges above for code, licensing and documentation.

Compatibility

[image: Travis badge] [https://travis-ci.org/gnarayan/WDmodel] [image: Python badge] [https://www.python.org/] [image: Coveralls badge] [https://coveralls.io/github/gnarayan/WDmodel?branch=master]

The code has been tested on Python 2.7 and 3.6 on both OS X (El Capitan and
Sierra) and Linux (Debian-derivatives). Send us email or open an issue if you
need help!

Analysis

We’re working on a publication with the results from our combined Cycle 22 and
Cycle 20 data, while ramping up for Cycle 25! A full data release of Cycle 20
and 22 HST data, and ground-based imaging and spectroscopy will accompany the
publication. Look for an updated link here!

You can read the first version of our analysis of four of the Cycle 20
objects
here [http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1603.03825]

That analysis was intended as a proof-of-concept and used custom IDL routines
from Jay Holberg (U. Arizona) to infer DA intrinsic parameters and custom
python code to fit the reddening parameters. This code is intended to
(significantly) improve on that analysis.

Help

This document will help get you up and running with the WDmodel package.

For the most part, you can simply execute code in grey boxes to get things up
and running, and ignore the text initially. Come back to it when you need help,
or to configure the fitter.

Contents

	Installation
	Setting up an environment vs setting up a known good environment

	Some extra notes on installation

	Usage

	Analysis

	Package documentation
	WDmodel package
	WDmodel.WDmodel module

	WDmodel.covariance module

	WDmodel.fit module

	WDmodel.io module

	WDmodel.likelihood module

	WDmodel.main module

	WDmodel.mossampler module

	WDmodel.passband module

	WDmodel.viz module

Indices and tables

	Index

	Module Index

	Search Page

Installing WDmodel

This document will step you through getting the WDmodel package installed
on your system.

	
	Installation instructions

	
	Get python

	Get the code

	Install everything

	Get auxillary pysynphot files

	Install the code

	Some extra notes

Installation Instructions

Here’s a minimal set of instructions to get up and running. We will eventually
get this package up on PyPI and conda-forge, and that should make this even
easier.

0. Install python:

We recommend using the anaconda python distribution to run this package. If you
don’t have it already, follow the instructions here [https://conda.io/docs/install/quick.html#linux-miniconda-install]

Make sure you added the conda/bin dir to your path!

If you elect to use your system python, or some other distribution, we will
assume you know what you are doing, and you can, skip ahead.

1. Get the code:

Clone this repository

git clone https://github.com/gnarayan/WDmodel.git
cd WDmodel

2. Install everything:

	Create a new environment from specification (Preferred! All dependencies resolved!)

conda env create -f docs/env/conda_environment_py[27|36]_[osx64|i686].yml

or

	Create a new environment from scratch (Let conda figure out dependencies and you sort out potential issues)

cp docs/env/condarc.example ~/.condarc
conda create -n WDmodel
source activate WDmodel
conda install --yes --file dependencies_py[27|36].txt

	Setting up an environment vs setting up a known good environment

3. Get the latest HST CDBS files:

These are available over FTP from
[ftp://archive.stsci.edu/pub/hst/pysynphot/]

Untar them wherever you like, and set the PYSYN_CDBS environment variable.
You need at least synphot1.tar.gz and synphot6.tar.gz.

export PYSYN_CDBS=place_you_untarred_the_files

4. Install the package [optional]:

python setup.py install

Extra

The instructions should be enough to get up and running, even without sudo
privileges. There’s a few edge cases on cluster environments though. These
notes may help:

	Some extra notes on installation
	Installing eigen3 without conda

	Installing OpenMPI and mpi4py without conda

	Notes from installing on the Odyssey cluster at Harvard

Setting up an environment vs setting up a known good environment

The env folder contains files to help get you setup using a consistent
environment with all packages specified.

The requirements_py[27|36].txt files contains a list of required python
packages and known working versions for each. They differ from the
dependencies_py[27|36].txt files in the root directory in that those files
specify packages and version ranges, rather than exact versions, to allow conda
to resolve dependecies and pull updated versions.

Of course, the environment really needs more than just python packages, while
pip only manages python packages. The conda environment files,
conda_environment_py[27|37]_[osx64|i686].yml files can be used to create
conda environments with exact versions of all the packages for python 2.7 or
3.6 on OS X or linux. This is the most reliable way to recreate the entire
environment.

Some extra notes on installation

If you followed the installation process detailed above, you shouldn’t need
these notes, but they are provided for users who may be running on environments
they do not manage themselves.

	Installing eigen3 without conda

	Installing OpenMPI and mpi4py without conda

	Installing on a cluster

Installing eigen3 without conda

If eigen3 isn’t on your system, and installing it with conda didn’t work

For OS X do:

brew install eigen

or on a linux system with apt:

apt-get install libeigen3-dev

or compile it from source [http://eigen.tuxfamily.org/index.php?title=Main_Page]

Note that if you do install it in a custom location, you may have to compile
celerite yourself.

pip install celerite --global-option=build_ext --global-option=-I/path/to/eigen3

Installing OpenMPI and mpi4py without conda

if no mpi is on your system, and installing it with conda didn’t work

For OS X do:

brew install [mpich|mpich2|open-mpi]

on a linux system with apt:

apt-get install openmpi-bin

and if you had to resort to brew or apt, then finish with:

pip install mpi4py

Notes from installing on the Odyssey cluster at Harvard

These may be of use to get the code up and running with MPI on some
other cluster. Good luck.

Odyssey uses the lmod system for module management, like many other clusters
You can module spider openmpi to find what the openmpi modules.

The advantage to using this is distributing your computation over multiple
nodes. The disadvantage is that you have to compile mpi4py yourself against
the cluster mpi.

module load gcc/6.3.0-fasrc01 openmpi/2.0.2.40dc0399-fasrc01
wget https://bitbucket.org/mpi4py/mpi4py/downloads/mpi4py-2.0.0.tar.gz
tar xvzf mpi4py-2.0.0.tar.gz
cd mpi4py-2.0.0
python setup.py build --mpicc=$(which mpicc)
python setup.py build_exe --mpicc="$(which mpicc) --dynamic"
python setup.py install

Using WDmodel

This document will help you get comfortable using the WDmodel package.

	
	Usage

	
	Get data

	Running single threaded

	Running with MPI

	
	Useful options

	
	Quick analysis

	Initializing the fitter

	Configuring the sampler

	Resuming the fit

Usage

This is the TL;DR version to get up and running.

1. Get the data:

Instructions will be available here when the paper is accepted. In the meantime
there’s a single test object in the spectroscopy directory. If you want more,
Write your own HST proposal! :-P

2. Run a fit single threaded:

fit_WDmodel --specfile data/spectroscopy/yourfavorite.flm

This option is single threaded and slow, but useful to testing or quick
exploratory analysis.

A more reasonable way to run things fast is to use mpi.

3. Run a fit as an MPI process:

mpirun -np 8 fit_WDmodel --mpi --specfile=file.flm [--ignorephot]

Note that --mpi MUST be specified in the options to
WDmodel and you must start the process with mpirun

Useful runtime options

There’s a large number of command line options to the fitter, and most of it’s
aspects can be configured. Some options make sense in concert with others, and
here’s a short summary of use cases.

Quick looks

The spectrum can be trimmed prior to fitting with the --trimspec
option. You can also blotch over gaps and cosmic rays if your reduction
was sloppy, and you just need a quick fit, but it’s better to do this
manually.

If there is no photometry data for the object, the fitter will barf
unless --ignorephot is specified explicitly, so you know that the
parameters are only constrained by the spectroscopy.

The fitter runs a MCMC to explore the posterior distribution of the model
parameters given the data. If you are running with the above two options,
chances are you are at the telescope, getting spectra, and doing quick look
reductions, and you just want a rough idea of temperature and surface gravity
to decide if you should get more signal, and eventually get HST photometry. The
MCMC is overkill for this purpose so you can --skipmcmc, in which case,
you’ll get results using minuit. They’ll be biased, and the errors will
probably be too small, but they give you a ballpark estimate.

If you do want to use the MCMC anyway, you might like it to be faster. You can
choose to use only every nth point in computing the log likelihood with
--everyn - this is only intended for testing purposes, and should probably
not be used for any final analysis. Note that the uncertainties increase as
you’d expect with fewer points.

Setting the initial state

The fitter really runs minuit to refine initial supplied guesses for
parameters. Every now at then, the guess prior to running minuit is so far off
that you get rubbish out of minuit. This can be fixed by explicitly supplying a
better initial guess. Of course, if you do that, you might wonder why even
bother with minuit, and may wish to skip it entirely. This can be disabled with
the --skipminuit option. If --skipminuit is used, a dl guess MUST
be specified.

All of the parameter files can be supplied via a JSON parameter file
supplied via the --param_file option, or using individual parameter
options. An example parameter file is available in the module directory.

Configuring the sampler

You can change the sampler type (-samptype), number of chain temperatures
(--ntemps), number of walkers (--nwalkers), burn in steps
(--nburnin), production steps (--nprod), and proposal scale for the
MCMC (--ascale). You can also thin the chain (--thin) and discard some
fraction of samples from the start (--discard). The default sampler is the
ensemble sampler from the emcee [https://emcee.readthedocs.io/en/stable/user/quickstart.html#module-emcee] package. For a more conservative
approach, we recommend the ptsampler with ntemps=5, nwalkers=100,
nprod=5000 (or more).

Resuming the fit

If the sampling needs to be interrupted, or crashes for whatever reason, the
state is saved every 100 steps, and the sampling can be restarted with
--resume. Note that you must have run at least the burn in and 100 steps for
it to be possible to resume, and the state of the data, parameters, or chain
configuration should not be changed externally (if they need to be use
--redo and rerun the fit). You can increase the length of the chain, and
chain the visualization options when you --resume but the state of
everything else is restored.

You can get a summary of all available options with --help

Useful routines

There are a few useful routines included in the WDmodel package. Using
WDmodel itself will do the same thing as fit_WDmodel. If you need to
look at results from a large number of fits, print_WDmodel_result_table and
print_WDmodel_residual_table will print out tables of results and
residuals. make_WDmodel_slurm_batch_scripts provides an example script to
generate batch scripts for the SLURM system used on Harvard’s Odyssey cluster.
Adapt this for use with other job queue systems or clusters.

Analyzing WDmodel

This document describes the output produced by the WDmodel package.

	
	Analysis

	
	The fit

	Spectral flux calibration errors

	Hydrogen Balmer line diagnostics

	Posterior distributions

	Output files

Analysis

There’s many different outputs (ascii files, bintables, plots) that are
produced by the WDmodel package. We’ll describe the plots first - it is a
good idea to look at your data before using numbers from the analysis.

1. The fit:

All the plots are stored in <spec basename>_mcmc.pdf in the output
directory that is printed as you run the WDmodel fitter (default:
out/<object name>/<spec basename>/.

[image: _images/example_fit_spec.png]

[image: _images/example_fit_phot.png]

The first plots show you the bottom line - the fit of the model (red) to the
data - the observed photometry and spectroscopy (black). Residuals for both are
shown in the lower panel. The model parameters inferred from the data are shown
in the legend of the spectrum plot. Draws from the posterior are shown in
orange. The number of these is customizable with --ndraws. Observational
uncertainties are shown as shaded grey regions.

If both of these don’t look reasonable, then the inferred parameters are
probably meaningless. You should look at why the model is not in good agreement
with the data. We’ve found this tends to happen if there’s a significant flux
excess at some wavelengths, indicating a companion or perhaps variability.

2. Spectral flux calibration errors:

[image: _images/example_fit_spec_nogp.png]

The WDmodel package uses a Gaussian process to model correlated flux
calibration errors in the spectrum. These arise from a variety of sources
(flat-fielding, background subtraction, extraction of the 2D spectrum with a
polynomial, telluric feature removal, and flux calibration relative to some
other spectrophotometric standard, which in turn is probably only good to a few
percent). However, most of the processes that generate these errors would cause
smooth and continuous deformations to the observed spectrum, and a single
stationary covariance kernel is a useful and reasonable way to model the
effects. The choice of kernel is customizable (--covtype, with default
Matern32 which has proven more than sufficient for data from four different
spectrographs with very different optical designs).

The residual plot shows the difference between the spectrum and best fit model
without the Gaussian process applied. The residuals therefore show our estimate
of the flux calibration errors and the Gaussian process model for them.

3. Hydrogen Balmer line diagnostics:

[image: _images/example_fit_balmerlines.png]

[image: _images/example_fit_balmerlines_resids.png]

These plots illustrate the spectroscopic data and model specifically in the
region of the Hydrogen Balmer lines. While the entire spectrum and all the
photometry is fit simultaneously, we extract the Balmer lines, normalize their
local continua to unity, and illustrate them separately here, offsetting each
vertically a small amount for clarity.

With the exception of the SDSS autofit package used for their white dwarf
analysis (which isn’t public in any case), every white dwarf atmosphere fitting
code takes the approach of only fitting the Hydrogen Balmer lines to determine
model parameters. This includes our own proof-of-concept analysis of Cycle 20
data. The argument goes that the inferred model parameters aren’t sensitive to
reddening if the local continuum is divided out, and the line profiles
determine the temperature and surface gravity.

In reality, reddening also changes the shape of the line profiles, and to
divide out the local continuum, a model for it had to be fit (typically a
straight line across the line from regions defined “outside” the line profile
wings). The properties of this local continuum are strongly correlated with
reddening, and errors in the local continuum affect the inference of the model
parameters, particularly at low S/N. This is the regime our program to observe
faint white dwarfs operates in - low S/N with higher reddening. Any reasonable
analysis of systematic errors should illustrate significant bias resulting from
the naive analysis in the presence of correlated errors.

In other words, the approach doesn’t avoid the problem, so much as shove it
under a rug with the words “nuisance parameters” on top. This is why we
adopted the more complex forward modeling approach in the WDmodel package.
Unfortunately, Balmer profile fits are customary in the field, so after we
forward model the data, we make a simple polynomial fit to the continuum (using
our best understanding of what SDSS’ autofit does), and extract out the
Balmer lines purely for this visualization. This way the polynomial continuum
model does have no affect on the inference, and if it goes wrong and the Balmer
line profile plots look wonky, it doesn’t actually matter.

If you mail the author about these plots, he will get annoyed and grumble about
you, and probably reply with snark. He had no particular desire to even include
these plots.

4. Posterior Distributions:

[image: _images/example_fit_posterior.png]

A corner plot of the posterior distribution. If the model and data are not in
good agreement, then this is a good place to look. If you are running with
--samptype=ensemble (the default), you might consider --samptype=pt
--ntemps=5 --nwalkers=100 --nprod=5000 --thin 10 to better sample the
posterior, and map out any multi-modality.

5. Output Files:

This table describes the output files produced by the fitter.

	File

	Description

	<spec basename>_inputs.hdf5

	All inputs to fitter and visualization module. Restored on --resume

	<spec basename>_params.json

	Initial guess parameters. Refined by minuit if not --skipminuit

	<spec basename>_minuit.pdf

	Plot of initial guess model, if refined by minuit

	<spec basename>_mcmc.hdf5

	Full Markov Chain - positions, log posterior, chain attributes

	<spec basename>_mcmc.pdf

	Plot of model and data after MCMC

	<spec basename>_result.json

	Summary of inferred model parameters, errors, uncertainties after MCMC

	<spec basename>_spec_model.dat

	Table of the observed spectrum and inferred model spectrum

	<spec basename>_phot_model.dat

	Table of the observed photometry and inferred model photometry

	<spec basename>_full_model.hdf5

	Derived normalized SED of the object

See Useful routines for some useful routines to summarize fit results.

WDmodel

	WDmodel package
	Submodules
	WDmodel.WDmodel module

	WDmodel.covariance module

	WDmodel.fit module

	WDmodel.io module

	WDmodel.likelihood module

	WDmodel.main module

	WDmodel.mossampler module

	WDmodel.passband module

	WDmodel.viz module

WDmodel package

WDmodel: Bayesian inference of white dwarf properties from spectra and
photometry to establish spectrophotometric standards

Submodules

	WDmodel.WDmodel module

	WDmodel.covariance module

	WDmodel.fit module

	WDmodel.io module

	WDmodel.likelihood module

	WDmodel.main module

	WDmodel.mossampler module

	WDmodel.passband module

	WDmodel.viz module

WDmodel.WDmodel module

DA White Dwarf Atmosphere Models and SED generator.

Model grid originally from J. Holberg using I. Hubeny’s Tlusty code (v200) and
custom Synspec routines, repackaged into HDF5 by G. Narayan.

	
class WDmodel.WDmodel.WDmodel(grid_file=None, grid_name=None, rvmodel=u'f99')

	Bases: object [https://docs.python.org/3/library/functions.html#object]

DA White Dwarf Atmosphere Model and SED generator

Base class defines the routines to generate and work with DA White Dwarf
model spectra. Requires a grid file of DA White Dwarf atmospheres. This
grid file is included along with the package - TlustyGrids.hdf5 - and is
the default.

	Parameters

	
	grid_file (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Filename of the HDF5 grid file to read. See
WDmodel.io.read_model_grid() for format of the grid file.
Default is TlustyGrids.hdf5, included with the WDmodel
package.

	grid_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of the HDF5 group containing the white dwarf model atmosphere
grids in grid_file. Default is default

	rvmodel ({'ccm89','od94','f99','custom'}, optional) – Specify parametrization of the reddening law. Default is 'f99'.

	rvmodel

	parametrization

	'ccm89'

	Cardelli, Clayton and Mathis (1989, ApJ, 345, 245)

	'od94'

	O’Donnell (1994, ApJ, 422, 158)

	'f99'

	Fitzpatrick (1999, PASP, 111, 63)

	'custom'

	Custom law from Jay Holberg (email, 20180424)

	
_lines

	dictionary mapping Hydrogen Balmer series line names to line number,
central wavelength in Angstrom, approximate line width and continuum
region width around line. Used to extract Balmer lines from spectra for
visualization.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_grid_file

	Filename of the HDF5 grid file that was read.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
_grid_name

	Name of the HDF5 group containing the white dwarf model atmosphere

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
_wave

	Array of model grid wavelengths in Angstroms, sorted in ascending order

	Type

	array-like

	
_ggrid

	Array of model grid surface gravity values in dex, sorted in ascending order

	Type

	array-like

	
_tgrid

	Array of model grid temperature values in Kelvin, sorted in ascending order

	Type

	array-like

	
_nwave

	Size of the model grid wavelength array, _wave

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
_ngrav

	Size of the model grid surface gravity array, _ggrid

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
_ntemp

	Size of the model grid temperature array, _tgrid

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
_flux

	Array of model grid fluxes, shape (_nwave, _ntemp, _ngrav)

	Type

	array-like

	
_lwave

	Array of model grid log10 wavelengths for interpolation

	Type

	array-like

	
_lflux

	Array of model grid log10 fluxes for interpolation, shape (_ntemp, _ngrav, _nwave)

	Type

	array-like

	
_law

	
	Type

	extinction function corresponding to rvmodel

	Returns

	out

	Return type

	WDmodel.WDmodel.WDmodel instance

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the supplied rvmodel is unknown

Notes

Virtually none of the attributes should be used directly since it is
trivially possible to break the model by redefining them. Access to
them is best through the functions connected to the models.

A custom user-specified grid file can be specified. See
WDmodel.io.read_model_grid() for the format of the grid file.

Uses scipy.interpolate.RegularGridInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator] to
interpolate the models.

The class contains various convenience methods that begin with an
underscore (_) that will not be imported by default. These are intended
for internal use, and do not have the sanity checking and associated
overhead of the public methods.

	
_WDmodel__init__rvmodel(rvmodel=u'f99')

	

	
_WDmodel__init__tlusty(grid_file=None, grid_name=None)

	

	
__call__(teff, logg, wave=None, log=False, strict=True)

	Returns the model flux given teff and logg at wavelengths wave

Wraps WDmodel.WDmodel.WDmodel._get_model() adding checking of
inputs.

	Parameters

	
	teff (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere temperature (in Kelvin)

	logg (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere surface gravity (in dex)

	wave (array-like, optional) – Desired wavelengths at which to compute the model atmosphere flux.
If not supplied, the full model wavelength grid is returned.

	log (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return the log10 flux, rather than the flux

	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If strict, teff and logg out of model grid range raise a
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], otherwise raise a RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning]
and set teff, logg to the nearest grid value.

	Returns

	
	wave (array-like) – Valid output wavelengths

	flux (array-like) – Interpolated model flux at teff, logg and wavelengths wave

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If teff or logg are out of range of model grid and strict is True
or
if there are any invalid wavelengths, or the requested wavelengths
to do not overlap with the model grid

Notes

Unlike the corresponding private methods, the public methods implement
checking of the inputs and returns the wavelengths in addition to the
flux. Internally, we only use the private methods as the inputs only
need to be checked once, and their state is not altered anywhere after.

	
__init__(grid_file=None, grid_name=None, rvmodel=u'f99')

	x.__init__(…) initializes x; see help(type(x)) for signature

	
_custom_extinction(wave, av, rv=3.1, unit=u'aa')

	Return the extinction for av, rv at wavelengths wave
for the custom reddening law defined by J. Holberg

Mimics the interface provided by
WDmodel.WDmodel.WDmodel._law to calculate the extinction as
a function of wavelength (in Angstroms), \(A_{\lambda}\).

	Parameters

	
	wave (array-like) – Array of wavelengths in Angstrom at which to compute extinction,
sorted in ascending order

	av (float [https://docs.python.org/3/library/functions.html#float]) – Extinction in the V band, \(A_V\)

	rv (float [https://docs.python.org/3/library/functions.html#float], optional) – Fixed to 3.1 for J. Holberg’s custom reddening law

	Returns

	out – Extinction at wavelengths wave for av and rv

	Return type

	array-like

Notes

av should be >= 0.

	
_extract_from_indices(w, f, ZE, df=None)

	Extracts slices of multiple arrays for the same set of indices.

Convenience function to extract elements of wavelength w, flux f
and optionally flux uncertainty df using indices ZE

	Parameters

	
	w (array-like) – Wavelength array from which to extract indices ZE

	f (array-like) – Flux array from which to extract indices ZE

	ZE (array-like) – indices to extract

	df (None [https://docs.python.org/3/library/constants.html#None] or array-like, optional) – If array-like, extracted elements of this array are also returned

	Returns

	
	w (array-like) – elements of input wavelength array at indices ZE

	f (array-like) – elements of input flux array at indices ZE

	[df] (array-like) – elements of input flux uncertainty array at indices ZE if
optional input df is supplied

	
_extract_spectral_line(w, f, line, df=None)

	Extracts slices of multiple arrays corresponding to a hydrogen Balmer
line

Convenience function to extract elements of wavelength w, flux f
and optionally flux uncertainty df for a hydrogen Balmer line.
Wraps WDmodel.WDmodel.WDmodel._get_line_indices() and
WDmodel.WDmodel.WDmodel._extract_from_indices(), both of which
have their own reasons for existence as well.

	Parameters

	
	w (array-like) – Wavelength array from which to extract elements corresponding to
hydrogen Balmer line

	f (array-like) – Flux array from which to extract elements corresponding to hydrogen
Balmer line

	line ({'alpha', 'beta', 'gamma', 'delta', 'zeta', 'eta'}) – Name of hydrogen Balmer line to extract.
Properties are pre-defined in WDmodel.WDmodel.WDmodel._lines

	df (None [https://docs.python.org/3/library/constants.html#None] or array-like, optional) – If array-like, extracted elements of this array are also returned

	Returns

	
	w (array-like) – elements of input wavelength array for hydrogen Balmer feature
line

	f (array-like) – elements of input flux array for hydrogen Balmer feature line

	[df] (array-like) – elements of input flux uncertainty array for hydrogen Balmer
feature line if optional input df is supplied

Notes

Same as WDmodel.WDmodel.WDmodel.extract_spectral_line()
without checking of inputs and therefore corresponding overhead. Used
internally.

	
_get_full_obs_model(teff, logg, av, fwhm, wave, rv=3.1, log=False, pixel_scale=1.0)

	Returns the observed model flux given teff, logg, av, rv,
fwhm (for Gaussian instrumental broadening) at wavelengths, wave as
well as the full SED.

Convenience function that does the same thing as
WDmodel.WDmodel.WDmodel._get_obs_model(), but also returns the
full SED without any instrumental broadening applied, appropriate for
synthetic photometry.

Uses WDmodel.WDmodel.WDmodel._get_model() to get the
unreddened model, and reddens it with
WDmodel.WDmodel.WDmodel.reddening() and convolves it with a
Gaussian kernel using
scipy.ndimage.filters.gaussian_filter1d()

	Parameters

	
	teff (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere temperature (in Kelvin)

	logg (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere surface gravity (in dex)

	av (float [https://docs.python.org/3/library/functions.html#float]) – Extinction in the V band, \(A_V\)

	fwhm (float [https://docs.python.org/3/library/functions.html#float]) – Instrumental FWHM in Angstrom

	wave (array-like) – Desired wavelengths at which to compute the model atmosphere flux.

	rv (float [https://docs.python.org/3/library/functions.html#float], optional) – The reddening law parameter, \(R_V\), the ration of the V band
extinction \(A_V\) to the reddening between the B and V bands,
\(E(B-V)\). Default is 3.1, appropriate for stellar SEDs in the
Milky Way.

	log (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return the log10 flux, rather than the flux (what’s actually interpolated)

	pixel_scale (float [https://docs.python.org/3/library/functions.html#float], optional) – Jacobian of the transformation between wavelength in Angstrom and
pixels. In principle, this should be a vector, but virtually all
spectral reduction packages resample the spectrum onto a uniform
wavelength scale that is close to the native pixel scale of the
spectrograph. Default is 1.

	Returns

	
	flux (array-like) – Interpolated model flux at teff, logg with reddening
parametrized by av, rv and broadened by a Gaussian kernel
defined by fwhm at wavelengths wave

	mod (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray] with dtype=[('wave', '<f8'), ('flux', '<f8')]) – Full model SED at teff, logg with reddening parametrized by
av, rv

Notes

fwhm and pixel_scale must be > 0

	
classmethod _get_indices_in_range(wave, WA, WB, W0=None)

	Returns indices of wavelength between blue and red wavelength limits
and the central wavelength

	Parameters

	
	wave (array-like) – Wavelengths array from which to extract indices

	WA (float [https://docs.python.org/3/library/functions.html#float]) – blue limit of wavelengths to extract

	WB (float [https://docs.python.org/3/library/functions.html#float]) – red limit of wavelenghts to extract

	W0 (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None], optional) – None or a central wavelength of range [WA, WB] to return.
If None, the central wavelength is computed, else the input is
simply returned.

	Returns

	
	W0 (float) – central wavelength of range [WA, WB]

	ZE (array-like) – indices of wave in range [WA, WB]

	
_get_line_indices(wave, line)

	Returns the central wavelength and indices of wavelength corresponding
to a hydrogen Balmer line

	Parameters

	
	wave (array-like) – Wavelengths array from which to extract indices

	line ({'alpha', 'beta', 'gamma', 'delta', 'zeta', 'eta'}) – Name of hydrogen Balmer line to extract.
Properties are pre-defined in WDmodel.WDmodel.WDmodel._lines

	Returns

	
	W0 (float) – central wavelength of line

	ZE (array-like) – indices of wave of line

Notes

No checking of input - will throw KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] if line is not
accepted value

	
_get_model(teff, logg, wave=None, log=False)

	Returns the model flux given teff and logg at wavelengths wave

Simple 3-D interpolation of model grid. Computes unreddened,
unnormalized, unconvolved, interpolated model flux. Uses
scipy.interpolate.RegularGridInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator] to generate the
interpolated model. This output has been tested against
WDmodel.WDmodel.WDmodel._get_model_nosp().

	Parameters

	
	teff (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere temperature (in Kelvin)

	logg (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere surface gravity (in dex)

	wave (array-like, optional) – Desired wavelengths at which to compute the model atmosphere flux.
If not supplied, the full model wavelength grid is returned.

	log (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return the log10 flux rather than the flux.

	Returns

	flux – Interpolated model flux at teff, logg and wavelengths wave.

	Return type

	array-like

Notes

Inputs teff, logg and wave must be within the bounds of
the grid. See WDmodel.WDmodel.WDmodel._wave,
WDmodel.WDmodel.WDmodel._ggrid,
WDmodel.WDmodel.WDmodel._tgrid, for grid locations and
limits.

	
_get_model_nosp(teff, logg, wave=None, log=False)

	Returns the model flux given teff and logg at wavelengths
wave

Simple 3-D interpolation of model grid. Computes unreddened,
unnormalized, unconvolved, interpolated model flux. Not used, but
serves as check of output of interpolation of
scipy.interpolate.RegularGridInterpolator [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html#scipy.interpolate.RegularGridInterpolator] output.

	Parameters

	
	teff (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere temperature (in Kelvin)

	logg (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere surface gravity (in dex)

	wave (array-like, optional) – Desired wavelengths at which to compute the model atmosphere flux.
If not supplied, the full model wavelength grid is returned.

	log (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return the log10 flux, rather than the flux.

	Returns

	flux – Interpolated model flux at teff, logg and wavelengths wave

	Return type

	array-like

Notes

Inputs teff, logg and wave must be within the bounds of the grid.
See WDmodel.WDmodel.WDmodel._wave,
WDmodel.WDmodel.WDmodel._ggrid,
WDmodel.WDmodel.WDmodel._tgrid, for grid locations and
limits.

This restriction is not imposed here for performance reasons, but
is implicitly set by routines that call this method. The user is
expected to verify this condition if this method is used outside
the context of the WDmodel package. Caveat emptor.

	
_get_obs_model(teff, logg, av, fwhm, wave, rv=3.1, log=False, pixel_scale=1.0)

	Returns the observed model flux given teff, logg, av, rv,
fwhm (for Gaussian instrumental broadening) and wavelengths wave

Uses WDmodel.WDmodel.WDmodel._get_model() to get the
unreddened model, and reddens it with
WDmodel.WDmodel.WDmodel.reddening() and convolves it with a
Gaussian kernel using
scipy.ndimage.filters.gaussian_filter1d()

	Parameters

	
	teff (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere temperature (in Kelvin)

	logg (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere surface gravity (in dex)

	av (float [https://docs.python.org/3/library/functions.html#float]) – Extinction in the V band, \(A_V\)

	fwhm (float [https://docs.python.org/3/library/functions.html#float]) – Instrumental FWHM in Angstrom

	wave (array-like) – Desired wavelengths at which to compute the model atmosphere flux.

	rv (float [https://docs.python.org/3/library/functions.html#float], optional) – The reddening law parameter, \(R_V\), the ration of the V band
extinction \(A_V\) to the reddening between the B and V bands,
\(E(B-V)\). Default is 3.1, appropriate for stellar SEDs in the
Milky Way.

	log (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return the log10 flux, rather than the flux (what’s actually interpolated)

	pixel_scale (float [https://docs.python.org/3/library/functions.html#float], optional) – Jacobian of the transformation between wavelength in Angstrom and
pixels. In principle, this should be a vector, but virtually all
spectral reduction packages resample the spectrum onto a uniform
wavelength scale that is close to the native pixel scale of the
spectrograph. Default is 1.

	Returns

	flux – Interpolated model flux at teff, logg with reddening parametrized
by av, rv and broadened by a Gaussian kernel defined by fwhm at
wavelengths wave

	Return type

	array-like

Notes

fwhm and pixel_scale must be > 0

	
_get_red_model(teff, logg, av, wave, rv=3.1, log=False)

	Returns the reddened model flux given teff, logg, av, rv at
wavelengths wave

Uses WDmodel.WDmodel.WDmodel._get_model() to get the
unreddened model, and reddens it with
WDmodel.WDmodel.WDmodel.reddening()

	Parameters

	
	teff (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere temperature (in Kelvin)

	logg (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere surface gravity (in dex)

	av (float [https://docs.python.org/3/library/functions.html#float]) – Extinction in the V band, \(A_V\)

	wave (array-like) – Desired wavelengths at which to compute the model atmosphere flux.

	rv (float [https://docs.python.org/3/library/functions.html#float], optional) – The reddening law parameter, \(R_V\), the ration of the V band
extinction \(A_V\) to the reddening between the B and V bands,
\(E(B-V)\). Default is 3.1, appropriate for stellar SEDs in the
Milky Way.

	log (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return the log10 flux, rather than the flux (what’s actually interpolated)

	Returns

	flux – Interpolated model flux at teff, logg with reddening parametrized
by av, rv at wavelengths wave

	Return type

	array-like

	
classmethod _wave_test(wave)

	Raises an error if wavelengths are not valid

	Parameters

	wave (array-like) – Array of wavelengths to test for validity

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If wavelength array is empty, has negative values, or is not monotonic

	
extinction(wave, av, rv=3.1)

	Return the extinction for av, rv at wavelengths wave

Uses the extinction function corresponding to the rvmodel
parametrization set as
WDmodel.WDmodel.WDmodel._law to calculate the
extinction as a function of wavelength (in Angstroms),
\(A_{\lambda}\).

	Parameters

	
	wave (array-like) – Array of wavelengths in Angstrom at which to compute extinction,
sorted in ascending order

	av (float [https://docs.python.org/3/library/functions.html#float]) – Extinction in the V band, \(A_V\)

	rv (float [https://docs.python.org/3/library/functions.html#float], optional) – The reddening law parameter, \(R_V\), the ration of the V band
extinction \(A_V\) to the reddening between the B and V bands,
\(E(B-V)\). Default is 3.1, appropriate for stellar SEDs in the
Milky Way.

	Returns

	out – Extinction at wavelengths wave for av and rv

	Return type

	array-like

Notes

av should be >= 0.

	
extract_spectral_line(w, f, line, df=None)

	Extracts slices of multiple arrays corresponding to a hydrogen Balmer
line

Convenience function to extract elements of wavelength w, flux f
and optionally flux uncertainty df for a hydrogen Balmer line. Wraps
WDmodel.WDmodel.WDmodel._extract_spectral_line() adding
checking of inputs.

	Parameters

	
	w (array-like) – Wavelength array from which to extract elements corresponding to
hydrogen Balmer line

	f (array-like) – Flux array from which to extract elements corresponding to hydrogen
Balmer line

	line ({'alpha', 'beta', 'gamma', 'delta', 'zeta', 'eta'}) – Name of hydrogen Balmer line to extract.
Properties are pre-defined in WDmodel.WDmodel.WDmodel._lines

	df (None [https://docs.python.org/3/library/constants.html#None] or array-like, optional) – If array-like, extracted elements of this array are also returned

	Returns

	
	w (array-like) – elements of input wavelength array for hydrogen Balmer feature
line

	f (array-like) – elements of input flux array for hydrogen Balmer feature line

	[df] (array-like) – elements of input flux uncertainty array for hydrogen Balmer
feature line if optional input df is supplied

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If line is not one of the first six of the Balmer series
or
If wavelengths are invalid
of
If there’s a difference in shape of any of the arrays

	
get_model(teff, logg, wave=None, log=False, strict=True)

	Returns the model flux given teff and logg at wavelengths wave

Wraps WDmodel.WDmodel.WDmodel._get_model() adding checking of
inputs.

	Parameters

	
	teff (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere temperature (in Kelvin)

	logg (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere surface gravity (in dex)

	wave (array-like, optional) – Desired wavelengths at which to compute the model atmosphere flux.
If not supplied, the full model wavelength grid is returned.

	log (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return the log10 flux, rather than the flux

	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If strict, teff and logg out of model grid range raise a
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], otherwise raise a RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning]
and set teff, logg to the nearest grid value.

	Returns

	
	wave (array-like) – Valid output wavelengths

	flux (array-like) – Interpolated model flux at teff, logg and wavelengths wave

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If teff or logg are out of range of model grid and strict is True
or
if there are any invalid wavelengths, or the requested wavelengths
to do not overlap with the model grid

Notes

Unlike the corresponding private methods, the public methods implement
checking of the inputs and returns the wavelengths in addition to the
flux. Internally, we only use the private methods as the inputs only
need to be checked once, and their state is not altered anywhere after.

	
get_obs_model(teff, logg, av, fwhm, rv=3.1, wave=None, log=False, strict=True, pixel_scale=1.0)

	Returns the observed model flux given teff, logg, av,
rv, fwhm (for Gaussian instrumental broadening) and wavelengths
wave

Uses WDmodel.WDmodel.WDmodel.get_red_model() to get the
reddened model and convolves it with a Gaussian kernel using
scipy.ndimage.filters.gaussian_filter1d()

	Parameters

	
	teff (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere temperature (in Kelvin)

	logg (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere surface gravity (in dex)

	av (float [https://docs.python.org/3/library/functions.html#float]) – Extinction in the V band, \(A_V\)

	fwhm (float [https://docs.python.org/3/library/functions.html#float]) – Instrumental FWHM in Angstrom

	rv (float [https://docs.python.org/3/library/functions.html#float], optional) – The reddening law parameter, \(R_V\), the ration of the V band
extinction \(A_V\) to the reddening between the B and V bands,
\(E(B-V)\). Default is 3.1, appropriate for stellar SEDs in
the Milky Way.

	wave (array-like, optional) – Desired wavelengths at which to compute the model atmosphere flux.
If not supplied, the full model wavelength grid is returned.

	log (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return the log10 flux, rather than the flux (what’s actually interpolated)

	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If strict, teff and logg out of model grid range raise a
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], otherwise raise a RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning] and set
teff, logg to the nearest grid value.

	pixel_scale (float [https://docs.python.org/3/library/functions.html#float], optional) – Jacobian of the transformation between wavelength in Angstrom and
pixels. In principle, this should be a vector, but virtually all
spectral reduction packages resample the spectrum onto a uniform
wavelength scale that is close to the native pixel scale of the
spectrograph. Default is 1.

	Returns

	
	wave (array-like) – Valid output wavelengths

	flux (array-like) – Interpolated model flux at teff, logg with reddening
parametrized by av, rv broadened by a Gaussian kernel
defined by fwhm at wavelengths wave

Notes

fwhm and pixel_scale must be > 0

	
get_red_model(teff, logg, av, rv=3.1, wave=None, log=False, strict=True)

	Returns the reddened model flux given teff, logg, av, rv at
wavelengths wave

Uses WDmodel.WDmodel.WDmodel.get_model() to get the unreddened
model, and reddens it with WDmodel.WDmodel.WDmodel.reddening()

	Parameters

	
	teff (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere temperature (in Kelvin)

	logg (float [https://docs.python.org/3/library/functions.html#float]) – Desired model white dwarf atmosphere surface gravity (in dex)

	av (float [https://docs.python.org/3/library/functions.html#float]) – Extinction in the V band, \(A_V\)

	rv (float [https://docs.python.org/3/library/functions.html#float], optional) – The reddening law parameter, \(R_V\), the ration of the V band
extinction \(A_V\) to the reddening between the B and V bands,
\(E(B-V)\). Default is 3.1, appropriate for stellar SEDs in the
Milky Way.

	wave (array-like, optional) – Desired wavelengths at which to compute the model atmosphere flux.
If not supplied, the full model wavelength grid is returned.

	log (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return the log10 flux, rather than the flux (what’s actually interpolated)

	strict (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If strict, teff and logg out of model grid range raise a
ValueError [https://docs.python.org/3/library/exceptions.html#ValueError], otherwise raise a RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning]
and set teff, logg to the nearest grid value.

	Returns

	
	wave (array-like) – Valid output wavelengths

	flux (array-like) – Interpolated model flux at teff, logg with reddening parametrized
by av, rv at wavelengths wave

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If av < 0 or rv not in [1.7, 5.1]

	
reddening(wave, flux, av, rv=3.1)

	Redden a 1-D spectrum with extinction

Uses the extinction function corresponding to the rvmodel
parametrization set in
WDmodel.WDmodel.WDmodel._WDmodel__init__rvmodel() to calculate the
extinction as a function of wavelength (in Angstroms),
\(A_{\lambda}\).

	Parameters

	
	wave (array-like) – Array of wavelengths in Angstrom at which to compute extinction,
sorted in ascending order

	flux (array-like) – Array of fluxes at wave at which to apply extinction

	av (float [https://docs.python.org/3/library/functions.html#float]) – Extinction in the V band, \(A_V\)

	rv (float [https://docs.python.org/3/library/functions.html#float], optional) – The reddening law parameter, \(R_V\), the ration of the V band
extinction \(A_V\) to the reddening between the B and V bands,
\(E(B-V)\). Default is 3.1, appropriate for stellar SEDs in the
Milky Way.

	Returns

	out – The reddened spectrum

	Return type

	array-like

Notes

av and flux should be >= 0.

WDmodel.covariance module

Parametrizes the noise of the spectrum fit using a Gaussian process.

	
class WDmodel.covariance.WDmodel_CovModel(errscale, covtype=u'Matern32', coveps=1e-12)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Parametrizes the noise of the spectrum fit using a Gaussian process.

This class models the covariance of the spectrum fit using a stationary
Gaussian process conditioned on the spectrum flux residuals and spectrum
flux uncertainties. The class allows the kernel of the Gaussian process to
be set in a single location. A few different stationary kernels are
supported. These choices are defined in celerite.terms [https://celerite.readthedocs.io/en/stable/python/kernel/#module-celerite.terms].

	Parameters

	
	errscale (float [https://docs.python.org/3/library/functions.html#float]) – Chracteristic scale of the spectrum flux uncertainties. The kernel
amplitude hyperparameters are reported as fractions of this number. If
the spectrum flux is rescaled, this must be set appropriately to get
the correct uncertainties. The WDmodel package uses the
median of the spectrum flux uncertainty internally.

	covtype ({'Matern32', 'SHO', 'Exp', 'White}) – The model to use to parametrize the covariance. Choices are defined in
celerite.terms [https://celerite.readthedocs.io/en/stable/python/kernel/#module-celerite.terms] All choices except 'White' parametrize the
covariance using a stationary kernel with a characteristic amplitude
fsig and scale tau + a white noise component with amplitude
fw. Only the white noise component is used to condition the
Gaussian process if covtype is 'White'. If not specified or
unknown, 'Matern32' is used and a RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning] is
raised.

	coveps (float [https://docs.python.org/3/library/functions.html#float]) – If covtype is 'Matern32' a
celerite.terms.Matern32Term [https://celerite.readthedocs.io/en/stable/python/kernel/#celerite.terms.Matern32Term] is used to approximate a
Matern32 kernel with precision coveps. The default is 1e-12.
Ignored if any other covtype is specified.

	
_errscale

	The input errscale

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
_covtype

	The input covtype

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
_coveps

	The input coveps

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
_ndim

	The dimensionality of kernel used to parametrize the covariance

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
_k1

	The non-trivial stationary component of the kernel

	Type

	None or a term instance from celerite.terms [https://celerite.readthedocs.io/en/stable/python/kernel/#module-celerite.terms]

	
_k2

	The white noise component of the kernel

	Type

	celerite.terms.JitterTerm [https://celerite.readthedocs.io/en/stable/python/kernel/#celerite.terms.JitterTerm]

	
_logQ

	1/sqrt(2) - only set if covtype is 'SHO'

	Type

	float [https://docs.python.org/3/library/functions.html#float], conditional

	Returns

	

	Return type

	A WDmodel.covariance.WDmodel_CovModel instance

Notes

Virtually none of the attributes should be used directly since it is
trivially possible to break the model by redefining them. Access to
them is best through the functions connected to the models.

	
__init__(errscale, covtype=u'Matern32', coveps=1e-12)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
getgp(wave, flux_err, fsig, tau, fw)

	Return the celerite.GP [https://celerite.readthedocs.io/en/stable/python/gp/#celerite.GP] instance

Precomputes the covariance matrix of the Gaussian process specified by
the functional form of the stationary kernel and the current values of
the hyperparameters. Wraps celerite.GP [https://celerite.readthedocs.io/en/stable/python/gp/#celerite.GP].

	Parameters

	
	wave (array-like, optional) – Wavelengths at which to condition the Gaussian process

	flux_err (array-like) – Flux uncertainty array on which to condition the Gaussian process

	fsig (float [https://docs.python.org/3/library/functions.html#float]) – The fractional amplitude of the non-trivial stationary kernel. The
true amplitude is scaled by
WDmodel.covariance.WDmodel_CovModel._errscale

	tau (float [https://docs.python.org/3/library/functions.html#float]) – The characteristic length scale of the non-trivial stationary
kernel.

	fw (float [https://docs.python.org/3/library/functions.html#float]) – The fractional amplitude of the white noise component of the
kernel. The true amplitude is scaled by
WDmodel.covariance.WDmodel_CovModel._errscale

	Returns

	gp – The Gaussian process with covariance matrix precomputed at the
location of the data

	Return type

	celerite.GP [https://celerite.readthedocs.io/en/stable/python/gp/#celerite.GP] instance

Notes

fsig, tau and fw all must be > 0. This constraint is not
checked here, but is instead imposed by the samplers/optimizers
used in the WDmodel.fit methods, and by bounds used to
construct the WDmodel.likelihood.WDmodel_Likelihood
instance using the WDmodel.likelihood.setup_likelihood()
method.

	
lnlikelihood(wave, res, flux_err, fsig, tau, fw)

	Return the log likelihood of the Gaussian process

Conditions the Gaussian process specified by the functional form of the
stationary kernel and the current values of the hyperparameters on the
data, and computes the log likelihood. Wraps
celerite.GP.log_likelihood() [https://celerite.readthedocs.io/en/stable/python/gp/#celerite.GP.log_likelihood].

	Parameters

	
	wave (array-like, optional) – Wavelengths at which to condition the Gaussian process

	res (array-like) – Flux residual array on which to condition the Gaussian process.
The kernel parametrization assumes that the mean model has been
subtracted off.

	flux_err (array-like) – Flux uncertaintyarray on which to condition the Gaussian process

	fsig (float [https://docs.python.org/3/library/functions.html#float]) – The fractional amplitude of the non-trivial stationary kernel. The
true amplitude is scaled by
WDmodel.covariance.WDmodel_CovModel._errscale

	tau (float [https://docs.python.org/3/library/functions.html#float]) – The characteristic length scale of the non-trivial stationary
kernel.

	fw (float [https://docs.python.org/3/library/functions.html#float]) – The fractional amplitude of the white noise component of the
kernel. The true amplitude is scaled by
WDmodel.covariance.WDmodel_CovModel._errscale

	Returns

	lnlike – The log likelihood of the Gaussian process conditioned on the data.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

See also

getgp()

	
predict(wave, res, flux_err, fsig, tau, fw, mean_only=False)

	Return the prediction for the Gaussian process

Conditions the Gaussian process specified by the parametrized with the
functional form of the stationary kernel and the current values of the
hyperparameters on the data, and computes returns the prediction at the
same location as the data. Wraps celerite.GP.predict() [https://celerite.readthedocs.io/en/stable/python/gp/#celerite.GP.predict].

	Parameters

	
	wave (array-like, optional) – Wavelengths at which to condition the Gaussian process

	res (array-like) – Flux residual array on which to condition the Gaussian process.
The kernel parametrization assumes that the mean model has been
subtracted off.

	flux_err (array-like) – Flux uncertaintyarray on which to condition the Gaussian process

	fsig (float [https://docs.python.org/3/library/functions.html#float]) – The fractional amplitude of the non-trivial stationary kernel. The
true amplitude is scaled by
WDmodel.covariance.WDmodel_CovModel._errscale

	tau (float [https://docs.python.org/3/library/functions.html#float]) – The characteristic length scale of the non-trivial stationary
kernel.

	fw (float [https://docs.python.org/3/library/functions.html#float]) – The fractional amplitude of the white noise component of the
kernel. The true amplitude is scaled by
WDmodel.covariance.WDmodel_CovModel._errscale

	mean_only (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Return only the predicted mean, not the covariance matrix

	Returns

	
	wres (array-like) – The prediction of the Gaussian process conditioned on the data at
the same location i.e. the model.

	cov (array-like, optional) – The computed covariance matrix of the Gaussian process using the
parametrized stationary kernel evaluated at the locations of the
data.

See also

getgp()

WDmodel.fit module

Core data processing and fitting/sampling routines

	
WDmodel.fit.blotch_spectrum(spec, linedata)

	Automagically remove cosmic rays and gaps from spectrum

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	linedata (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The observations of the spectrum corresponding to the hydrogen Balmer
lines.
Must have
dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8'), ('line_mask', 'i4'), ('line_ind','i4')]
Produced by orig_cut_lines()

	Returns

	spec – The blotched spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	Return type

	numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]

Notes

Some spectra have nasty cosmic rays or gaps in the data. This routine
does a reasonable job blotching these by Wiener filtering the spectrum,
marking features that differ significantly from the local variance in
the region, and replace them with the filtered values. The hydrogen
Balmer lines are preserved, so if your gap/cosmic ray lands on a line
it will not be filtered. Additionally, filtering has edge effects, and
these data are preserved as well. If you do blotch the spectrum, it is
highly recommended that you use the bluelimit and redlimit options to
trim the ends of the spectrum. Note that the spectrum will be rejected
if it has flux or flux errors that are not finite or below zero. This
is often the case with cosmic rays and gaps, so you will likely
have to do some manual removal of these points.

YOU SHOULD PROBABLY PRE-PROCESS YOUR DATA YOURSELF BEFORE FITTING IT
AND NOT BE LAZY! THIS ROUTINE ONLY EXISTS TO FIT QUICK LOOK SPECTRUM AT
THE TELESCOPE, BEFORE FINAL REDUCTIONS!

	
WDmodel.fit.fit_model(spec, phot, model, covmodel, pbs, params, objname, outdir, specfile, phot_dispersion=0.0, samptype=u'ensemble', ascale=2.0, ntemps=1, nwalkers=300, nburnin=50, nprod=1000, everyn=1, thin=1, pool=None, resume=False, redo=False)

	Core routine that models the spectrum using the white dwarf model and a
Gaussian process with a stationary kernel to account for any flux
miscalibration, sampling the posterior using a MCMC.

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	phot (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The photometry of objname with dtype=[('pb', 'str'), ('mag', '<f8'), ('mag_err', '<f8')]

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	pbs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Passband dictionary containing the passbands corresponding to
phot.pb` and generated by WDmodel.passband.get_pbmodel().

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A parameter dict such as that produced by
WDmodel.io.read_params()

	objname (str [https://docs.python.org/3/library/stdtypes.html#str]) – object name - used to save output with correct name

	outdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – controls where the chain file s written

	specfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Used in the title, and to set the name of the outfile

	phot_dispersion (float [https://docs.python.org/3/library/functions.html#float], optional) – Excess photometric dispersion to add in quadrature with the
photometric uncertainties phot.mag_err. Use if the errors are
grossly underestimated. Default is 0.

	samptype ({'ensemble', 'pt', 'gibbs'}) – Which sampler to use. The default is ensemble.

	ascale (float [https://docs.python.org/3/library/functions.html#float]) – The proposal scale for the sampler. Default is 2.

	ntemps (int [https://docs.python.org/3/library/functions.html#int]) – The number of temperatures to run walkers at. Only used if samptype
is in {'pt','gibbs'} and set to 1. for ensemble. See a
short summary review [https://en.wikipedia.org/wiki/Parallel_tempering] for details.
Default is 1.

	nwalkers (int [https://docs.python.org/3/library/functions.html#int]) – The number of Goodman and Weare walkers [http://msp.org/camcos/2010/5-1/p04.xhtml]. Default is 300.

	nburnin (int [https://docs.python.org/3/library/functions.html#int]) – The number of steps to discard as burn-in for the Markov-Chain. Default is 500.

	nprod (int [https://docs.python.org/3/library/functions.html#int]) – The number of production steps in the Markov-Chain. Default is 1000.

	everyn (int [https://docs.python.org/3/library/functions.html#int], optional) – If the posterior function is evaluated using only every nth
observation from the data, this should be specified. Default is 1.

	thin (int [https://docs.python.org/3/library/functions.html#int]) – Only save every thin steps to the output Markov Chain. Useful, if
brute force way of reducing correlation between samples.

	pool (None [https://docs.python.org/3/library/constants.html#None] or :py:class`emcee.utils.MPIPool`) – If running with MPI, the pool object is used to distribute the
computations among the child process

	resume (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, restores state and resumes the chain for another nprod iterations.

	redo (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, and a chain file and state file exist, simply clobbers them.

	Returns

	
	free_param_names (list) – names of parameters that were fit for. Names correspond to keys in
params and the order of parameters in samples.

	samples (array-like) – The flattened Markov Chain with the parameter positions.
Shape is (ntemps*nwalkers*nprod, nparam)

	samples_lnprob (array-like) – The flattened log of the posterior corresponding to the positions in
samples. Shape is (ntemps*nwalkers*nprod, 1)

	everyn (int) – Specifies sampling of the data used to compute the posterior. Provided
in case we are using resume to continue the chain, and this value
must be restored from the state file, rather than being supplied as a
user input.

	shape (tuple) – Specifies the shape of the un-flattened chain.
(ntemps, nwalkers, nprod, nparam)
Provided in case we are using resume to continue the chain, and
this value must be restored from the state file, rather than being
supplied as a user input.

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If resume is set without the chain having been run in the first
place.

Notes

Uses an Ensemble MCMC (implemented by emcee) to generate samples from
the posterior. Does a short burn-in around the initial guess model
parameters - either minuit or user supplied values/defaults.
Model parameters may be frozen/fixed. Parameters can have bounds
limiting their range. Then runs a full production change. Chain state
is saved after every 100 production steps, and may be continued after
the first 100 steps if interrupted or found to be too short. Progress
is indicated visually with a progress bar that is written to STDOUT.

See also

WDmodel.likelihood
WDmodel.covariance

	
WDmodel.fit.fix_pos(pos, free_param_names, params)

	Ensures that the initial positions of the emcee [https://emcee.readthedocs.io/en/stable/user/quickstart.html#module-emcee] walkers are out of bounds

	Parameters

	
	pos (array-like) – starting positions of all the walkers, such as that produced by
utils.sample_ball

	free_param_names (iterable) – names of parameters that are free to float. Names must correspond to keys in params.

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A parameter dict such as that produced by
WDmodel.io.read_params()

	Returns

	pos – starting positions of all the walkers, fixed to guarantee that they are
within bounds defined in params

	Return type

	array-like

Notes

emcee.utils.sample_ball() [https://emcee.readthedocs.io/en/stable/api.html#emcee.utils.sample_ball] creates random walkers that may be
initialized out of bounds. These walkers get stuck as there is no step
they can take that will make the change in loglikelihood finite. This
makes the chain appear strongly correlated since all the samples of one
walker are at a fixed location. This resolves the issue by assuming
that the parameter value was within bounds to begin with. This
routine does not do any checking of types, values or bounds. This check
is done by WDmodel.io.get_params_from_argparse() before the
fit. If you setup the fit using an external code, you should check
these values.

See also

emcee.utils.sample_ball() [https://emcee.readthedocs.io/en/stable/api.html#emcee.utils.sample_ball]
WDmodel.io.get_params_from_argparse()

	
WDmodel.fit.get_fit_params_from_samples(param_names, samples, samples_lnprob, params, ntemps=1, nwalkers=300, nprod=1000, discard=5)

	Get the marginalized parameters from the sample chain

	Parameters

	
	param_names (list [https://docs.python.org/3/library/stdtypes.html#list]) – names of parameters that were fit for. Names correspond to keys in
params and the order of parameters in samples.

	samples (array-like) – The flattened Markov Chain with the parameter positions.
Shape is (ntemps*nwalkers*nprod, nparam)

	samples_lnprob (array-like) – The flattened log of the posterior corresponding to the positions in
samples. Shape is (ntemps*nwalkers*nprod, 1)

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A parameter dict such as that produced by
WDmodel.io.read_params()

	ntemps (int [https://docs.python.org/3/library/functions.html#int]) – The number of temperatures chains were run at. Default is 1.

	nwalkers (int [https://docs.python.org/3/library/functions.html#int]) – The number of Goodman and Weare walkers [http://msp.org/camcos/2010/5-1/p04.xhtml] used in the fit. Default
is 300.

	nprod (int [https://docs.python.org/3/library/functions.html#int]) – The number of production steps in the Markov-Chain. Default is 1000.

	discard (int [https://docs.python.org/3/library/functions.html#int]) – percentage of nprod steps from the start of the chain to discard in
analyzing samples

	Returns

	
	mcmc_params (dict) – The output parameter dictionary with updated parameter estimates,
errors and a scale.
params.

	out_samples (array-like) – The flattened Markov Chain with the parameter positions with the first
%discard tossed.

	out_ samples_lnprob (array-like) – The flattened log of the posterior corresponding to the positions in
samples with the first %discard samples tossed.

See also

fit_model()

	
WDmodel.fit.hyper_param_guess(spec, phot, model, pbs, params)

	Makes a guess for the parameter mu after the initial fit by
quick_fit_spec_model()

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	phot (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The photometry of objname with dtype=[('pb', 'str'), ('mag', '<f8'), ('mag_err', '<f8')]

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	pbs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Passband dictionary containing the passbands corresponding to
phot.pb` and generated by WDmodel.passband.get_pbmodel().

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A parameter dict such as that produced by
WDmodel.io.read_params()

	Returns

	out_params – The output parameter dictionary with an initial guess for mu

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Notes

Uses the initial guess of parameters from the spectrum fit by
quick_fit_spec_model() to construct an initial guess of the
SED, and computes mu (which looks like a distance modulus, but also
includes a normalization for the radius of the DA white dwarf, and it’s
radius) as the median difference between the observed and synthetic
photometry.

	
WDmodel.fit.orig_cut_lines(spec, model)

	Cut out the hydrogen Balmer spectral lines defined in
WDmodel.WDmodel.WDmodel from the spectrum.

The masking of Balmer lines is basic, and not very effective at high
surface gravity or low temperature, or in the presence of non hydrogen
lines. It’s used to get a roughly masked set of data suitable for continuum
detection, and is effective in the context of our ground-based
spectroscopic followup campaign for HST GO 12967 and 13711 programs.

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	Returns

	
	linedata (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The observations of the spectrum corresponding to the hydrogen Balmer
lines.
Has dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8'), ('line_mask', 'i4'), (line_ind', 'i4')]

	continuumdata (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The continuum data. Has dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

Notes

Does a coarse cut to remove hydrogen absorption lines from DA white
dwarf spectra The line centroids, and widths are fixed and defined with
the model grid This is insufficient, and particularly at high surface
gravity and low temperatures the lines are blended. This routine is
intended to provide a rough starting point for the process of continuum
determination.

	
WDmodel.fit.polyfit_continuum(continuumdata, wave)

	Fit a polynomial to the DA white dwarf continuum to normalize it - purely
for visualization purposes

	Parameters

	
	continuumdata (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The continuum data.
Must have dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]
Produced by running the spectrum through
WDmodel.fit.orig_cut_lines() and extracting the pre-defined
lines in the WDmodel.WDmodel.WDmodel instance.

	wave (array-like) – The full spectrum wavelength array on which to interpolate the
continuum model

	Returns

	cont_model – The continuum model
Must have dtype=[('wave', '<f8'), ('flux', '<f8')]

	Return type

	numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]

Notes

Roughly follows the algorithm described by the SDSS SSPP for a global
continuum fit. Fits a red side and blue side at 5500 A separately to
get a smooth polynomial representation. The red side uses a degree 5
polynomial and the blue side uses a degree 9 polynomial. Then “splices”
them together - I don’t actually know how SDSS does this, but we simply
assert the two bits are the same function - and fits the full continuum
to a degree 9 polynomial.

	
WDmodel.fit.pre_process_spectrum(spec, bluelimit, redlimit, model, params, lamshift=0.0, vel=0.0, rebin=1, blotch=False, rescale=False)

	Pre-process the spectrum before fitting

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	bluelimit (None [https://docs.python.org/3/library/constants.html#None] or float [https://docs.python.org/3/library/functions.html#float]) – Trim wavelengths bluer than this limit. Uses the bluest wavelength of spectrum if None

	redlimit (None [https://docs.python.org/3/library/constants.html#None] or float [https://docs.python.org/3/library/functions.html#float]) – Trim wavelengths redder than this limit. Uses the reddest wavelength of spectrum if None

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A parameter dict such as that produced by
WDmodel.io.read_params()
Will be modified to adjust the spectrum normalization parameters dl
limits if rescale is set

	lamshift (float [https://docs.python.org/3/library/functions.html#float], optional) – Apply a flat wavelength shift to the spectrum. Useful if the target was
not properly centered in the slit, and the shift is not correlated with
wavelength. Default is 0.

	vel (float [https://docs.python.org/3/library/functions.html#float], optional) – Apply a velocity shift to the spectrum. Default is 0.

	rebin (int [https://docs.python.org/3/library/functions.html#int], optional) – Integer factor by which to rebin the spectrum.
Default is 1 (no rebinning).

	blotch (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Attempt to remove cosmic rays and gaps from spectrum. Only to be used
for quick look analysis at the telescope.

	rescale (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Rescale the spectrum to make the median noise ~1. Has no effect on
fitted parameters except spectrum flux normalization parameter dl
but makes residual plots, histograms more easily interpretable as they
can be compared to an N(0, 1) distribution.

	Returns

	spec – The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	Return type

	numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]

See also

orig_cut_lines()
blotch_spectrum()
rebin_spec_by_int_factor()
polyfit_continuum()

	
WDmodel.fit.quick_fit_spec_model(spec, model, params)

	Does a quick fit of the spectrum to get an initial guess of the fit parameters

Uses iminuit to do a rough diagonal fit - i.e. ignores covariance.
For simplicity, also fixed FWHM and Rv (even when set to be fit).
Therefore, only teff, logg, av, dl are fit for (at most).
This isn’t robust, but it’s good enough for an initial guess.

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A parameter dict such as that produced by
WDmodel.io.read_params()

	Returns

	migrad_params – The output parameter dictionary with updated initial guesses stored in
the value key. Same format as params.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	
	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If all of teff, logg, av, dl are set as fixed - there’s nothing to fit.

	RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning] – If minuit.Minuit.migrad() or minuit.Minuit.hesse() indicate that the fit is unreliable

Notes

None of the starting values for the parameters maybe None EXCEPT c.
This refines the starting guesses, and determines a reasonable value for c

	
WDmodel.fit.rebin_spec_by_int_factor(spec, f=1)

	Rebins a spectrum by an integer factor f

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	f (int [https://docs.python.org/3/library/functions.html#int], optional) – an integer factor to rebin the spectrum by. Default is 1 (no rebinning)

	Returns

	rspec – The rebinned spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	Return type

	numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]

Notes

If the spectrum is not divisible by f, the edges are trimmed by discarding
the remainder measurements from both ends. If the remainder itself is odd, the
extra measurement is discarded from the blue side.

WDmodel.io module

I/O methods. All the submodules of the WDmodel package use this module for
almost all I/O operations.

	
WDmodel.io._read_ascii(filename, **kwargs)

	Read ASCII files

Read space separated ASCII file, with column names provided on first line
(leading # optional). kwargs are passed along to
numpy.genfromtxt() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt]. Forces any string column data to be encoded in
ASCII, rather than Unicode.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the ASCII file. Column names must be provided on the first
line.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Extra options, passed directly to numpy.genfromtxt() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt]

	Returns

	out – Record array with the data. Field names correspond to column names in
the file.

	Return type

	numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]

See also

numpy.genfromtxt() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt]

	
WDmodel.io.copy_params(params)

	Returns a deep copy of a dictionary. Necessary to ensure that dictionaries
that nest dictionaries are properly updated.

	Parameters

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict] or Object) – Any python object for which a deepcopy needs to be created. Typically
a parameter dictionary such as that from
WDmodel.io.read_params()

	Returns

	params – A deepcopy of the object

	Return type

	Object

Notes

Simple wrapper around copy.deepcopy() [https://docs.python.org/3/library/copy.html#copy.deepcopy]

	
WDmodel.io.get_filepath(infile)

	Returns the full path to a file. If the path is relative, it is converted
to absolute. If this file does not exist, it is treated as a file within
the WDmodel package. If that file does not exist, an error is
raised.

	Parameters

	infile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file to set the full path for

	Returns

	pkgfile – The path to the file

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – If the infile could not be found at location or inside the
WDmodel package.

	
WDmodel.io.get_options(args, comm)

	Get command line options for the WDmodel fitter package

	Parameters

	
	args (array-like) – list of the input command line arguments, typically from
sys.argv [https://docs.python.org/3/library/sys.html#sys.argv]

	comm (None or mpi4py.mpi.MPI instance) – Used to communicate options to all child processes if running with mpi

	Returns

	
	args (Namespace) – Parsed command line options

	pool (None or :py:class`emcee.utils.MPIPool`) – If running with MPI, the pool object is used to distribute the
computations among the child process

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any input value is invalid

	
WDmodel.io.get_outfile(outdir, specfile, ext, check=False, redo=False, resume=False)

	Formats the output directory, spectrum filename, and an extension into an
output filename.

	Parameters

	
	outdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output directory name for the output file

	specfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The spectrum filename

	ext (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output file’s extension

	check (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, check if the output file exists

	redo (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False and the output file already exists, an error is raised

	resume (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False and the output file already exists, an error is raised

	Returns

	outfile – The output filename

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – If check is True, redo and resume are False, and
outfile exists.

Notes

We set the output file based on the spectrum name, since we can have
multiple spectra per object.

If outdir is configured by set_objname_outdir_for_specfile() for
specfile, it’ll include the object name.

See also

set_objname_outdir_for_specfile()

	
WDmodel.io.get_params_from_argparse(args)

	Converts an argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace] into an ordered parameter
dictionary.

	Parameters

	args (argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) – The parsed command-line options from WDmodel.io.get_options()

	Returns

	params – The parameter dictionary

	Return type

	collections.OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict]

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If format of argparse.Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace] is invalid.
or
If parameter is fixed but value is None.
or
If parameter value is out of bounds.

Notes

	Assumes that the argument parser options were names

	
	<param>_value : Value of the parameter (float or None)

	<param>_fix : Bool specifying if the parameter

	<param>_bounds : tuple with lower limit and upper limit

where <param> is one of WDmodel.io._PARAMETER_NAMES

See also

WDmodel.io.read_params()
WDmodel.io.get_options()

	
WDmodel.io.get_phot_for_obj(objname, filename)

	Gets the measured photometry for an object from a photometry lookup table.

	Parameters

	
	objname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Object name to look for photometry for

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The spectrum FWHM lookup table filename

	Returns

	phot – The photometry of objname with dtype=[('pb', 'str'), ('mag', '<f8'), ('mag_err', '<f8')]

	Return type

	numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]

	Raises

	
	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If there are no matches in the photometry lookup file or if there are
multiple matches for an object in the photometry lookup file

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If the photometry or the photometry uncertainty values are not finite
or if the photometry uncertainties are less <= 0

Notes

The lookup file must be readable by read_phot()

The column name with the object name objname expected to be obj

If column names for magnitudes are named <passband>, the column names
for errors in magnitudes in passband must be ‘d’+<passband_name>.

	
WDmodel.io.get_pkgfile(infile)

	Returns the full path to a file inside the WDmodel package

	Parameters

	infile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the file to set the full package filename for

	Returns

	pkgfile – The path to the file within the package.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – If the pkgfile could not be found inside the WDmodel package.

Notes

This allows the package to be installed anywhere, and the code to still
determine the location to a file included with the package, such as the
model grid file.

	
WDmodel.io.get_spectrum_resolution(specfile, spectable, fwhm=None, lamshift=None)

	Gets the measured FWHM from a spectrum lookup table.

	Parameters

	
	specfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The spectrum filename

	spectable (str [https://docs.python.org/3/library/stdtypes.html#str]) – The spectrum FWHM lookup table filename

	fwhm (None [https://docs.python.org/3/library/constants.html#None] or float [https://docs.python.org/3/library/functions.html#float], optional) – If specified, this overrides the resolution provided in the lookup
table. If None lookups the resultion from spectable.

	lamshift (None [https://docs.python.org/3/library/constants.html#None] or float [https://docs.python.org/3/library/functions.html#float], optional) – If specified, this overrides the wavelength shift provided in the lookup
table. If None lookups the wavelength shift from spectable.

	Returns

	
	fwhm (float) – The FWHM of the spectrum file. This is typically used as an initial
guess to the WDmodel.fit fitter routines.

	lamshift (float) – The wavelength shift to apply additively to the spectrum. This is not a
fit parameter, and is treated as an input

	Raises

	RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning] – If the spectable cannot be read, or the specfile name indicates
that this is a test, or if there are no or multiple matches for
specfile in the spectable

Notes

If the specfile is not found, it returns a default resolution of
5 Angstroms, appropriate for the instruments used in our program.

Note that there there’s some hackish internal name fixing since T.
Matheson’s table spectrum names didn’t match the spectrum filenames.

	
WDmodel.io.make_outdirs(dirname, redo=False, resume=False)

	Makes output directories

	Parameters

	
	dirname (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output directory name to create

	redo (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False the directory will not be created if it already exists, and an error is raised

	resume (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False the directory will not be created if it already exists, and an error is raised

	Returns

	None – If the output directory dirname is successfully created

	Return type

	None [https://docs.python.org/3/library/constants.html#None]

	Raises

	
	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – If the output directory exists

	OSError [https://docs.python.org/3/library/exceptions.html#OSError] – If the output directory could not be created

Notes

If the options are parsed by get_options() then only one of
redo or resume can be set, as the options are mutually
exclusive. If redo is set, the fit is redone from scratch, while
resume restarts the MCMC sampling from the last saved chain position.

	
WDmodel.io.read_fit_inputs(input_file)

	Read the fit input HDF5 file produced by write_fit_inputs() and
return numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray] instances with the data.

	Parameters

	input_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The HDF5 fit inputs filename

	Returns

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	cont_model (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The continuuum model. Has the same structure as spec.

	linedata (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The observations of the spectrum corresponding to the hydrogen Balmer
lines. Has dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8'), ('line_mask', 'i4')]

	continuumdata (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – Data used to generate the continuum model. Has the same structure as
spec.

	phot (None or numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – None or the photometry with dtype=[('pb', 'str'), ('mag', '<f8'), ('mag_err', '<f8')]

	fit_config (dict) –

	Dictionary with various keys needed to configure the fitter

	
	rvmodel : {'ccm89','od94','f99', 'custom'} - Parametrization of the reddening law.

	covtype : {'Matern32', 'SHO', 'Exp', 'White'}- kernel type used to parametrize the covariance

	coveps : float - Matern32 kernel precision

	phot_dispersion : float - Excess dispersion to add in quadrature with photometric uncertainties

	scale_factor : float - Flux scale factor

	Raises

	
	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – If all the fit inputs could not be restored from the HDF5 input_file

	RuntimeWarning [https://docs.python.org/3/library/exceptions.html#RuntimeWarning] – If the input_file includes a phot group, but the data cannot be loaded.

See also

write_fit_inputs()

	
WDmodel.io.read_full_model(input_file)

	Read the full SED model from an output file.

	Parameters

	input_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input HDF5 SED model filename

	Returns

	spec – Record array with the model SED.
Has dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	Return type

	numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]

	Raises

	
	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – If any of wave, flux or flux_err is not found in the file

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any value is not finite or if flux or flux_err have any
values <= 0

	
WDmodel.io.read_mcmc(input_file)

	Read the saved HDF5 Markov chain file and return samples, sample log
probabilities and chain parameters

	Parameters

	input_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The HDF5 Markov chain filename

	Returns

	
	samples (array-like) – The model parameter sample chain

	samples_lnprob (array-like) – The log posterior corresponding to each of the samples

	chain_params (dict) –

	The chain parameter dictionary

	
	param_names : list - list of model parameter names

	samptype : {'ensemble','pt','gibbs'} - the sampler to use

	ntemps : int - the number of chain temperatures

	nwalkers : int - the number of Goodman & Ware walkers

	nprod : int - the number of production steps of the chain

	ndim : int - the number of model parameters in the chain

	thin : int - the chain thinning if any

	everyn : int - the sparse of spectrum sampling step size

	ascale : float - the proposal scale for the sampler

	Raises

	IOError [https://docs.python.org/3/library/exceptions.html#IOError] – If a key in the fit_config output is missing

	
WDmodel.io.read_model_grid(grid_file=None, grid_name=None)

	Read the Tlusty/Hubeny grid file

	Parameters

	
	grid_file (None [https://docs.python.org/3/library/constants.html#None] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the Tlusty model grid HDF5 file. If None reads the
TlustyGrids.hdf5 file included with the WDmodel
package.

	grid_name (None [https://docs.python.org/3/library/constants.html#None] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the group name in the HDF5 file to read the grid from. If
None uses default

	Returns

	
	grid_file (str) – Filename of the HDF5 grid file

	grid_name (str) – Name of the group within the HDF5 grid file with the grid arrays

	wave (array-like) – The wavelength array of the grid with shape (nwave,)

	ggrid (array-like) – The surface gravity array of the grid with shape (ngrav,)

	tgrid (array-like) – The temperature array of the grid with shape (ntemp,)

	flux (array-like) – The DA white dwarf model atmosphere flux array of the grid.
Has shape (nwave, ngrav, ntemp)

Notes

There are no easy command line options to change this deliberately
because changing the grid file essentially changes the entire model,
and should not be done lightly, without careful comparison of the grids
to quantify differences.

See also

WDmodel.WDmodel

	
WDmodel.io.read_params(param_file=None)

	Read a JSON file that configures the default guesses and bounds for the
parameters, as well as if they should be fixed.

	Parameters

	param_file (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The name of the input parameter file. If not the default file provided
with the package, WDmodel_param_defaults.json, is read.

	Returns

	params – The dictionary with the parameter values, bounds, scale and
if fixed. See notes for more detailed information on dictionary
format and WDmodel_param_defaults.json for an example file for
param_file.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Notes

params is a dict the parameter names, as defined with
WDmodel.io._PARAMETER_NAMES as keys

	Each key must have a dictionary with keys:

	
	value : value

	fixed : a bool specifying if the parameter is fixed (True) or allowed to vary (False)

	scale : a scale parameter used to set the step size in this dimension

	bounds : An upper and lower limit on parameter values

The default bounds are set by the grids available for the DA White
Dwarf atmospheres, and by reasonable plausible ranges for the other
parameters. Don’t muck with them unless you really have good reason to.

This routine does not do any checking of types, values or bounds. This
is done by WDmodel.io.get_params_from_argparse() before the
fit. If you setup the fit using an external code, you should check
these values.

	
WDmodel.io.read_pbmap(filename, **kwargs)

	Read passband obsmode mapping table - wraps _read_ascii()

	
WDmodel.io.read_phot(filename, **kwargs)

	Read photometry - wraps _read_ascii()

	
WDmodel.io.read_reddening(filename, **kwargs)

	Read J. Holberg’s custom reddening function - wraps _read_ascii()

	
WDmodel.io.read_spec(filename, **kwargs)

	Read a spectrum

Wraps _read_ascii(), adding testing of the input arrays to check
if the elements are finite, and if the errors and flux are strictly
positive.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the ASCII file. Must have columns wave, flux,
flux_err

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Extra options, passed directly to numpy.genfromtxt() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt]

	Returns

	spec – Record array with the spectrum data.
Has dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	Return type

	numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If any value is not finite or if flux or flux_err have any
values <= 0

See also

numpy.genfromtxt() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt]
_read_ascii()

	
WDmodel.io.read_spectable(filename, **kwargs)

	Read spectrum FWHM table - wraps _read_ascii()

	
WDmodel.io.set_objname_outdir_for_specfile(specfile, outdir=None, outroot=None, redo=False, resume=False, nocreate=False)

	Sets the short human readable object name and output directory

	Parameters

	
	specfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – The spectrum filename

	outdir (None [https://docs.python.org/3/library/constants.html#None] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The output directory name to create. If None this is set based on specfile

	outroot (None [https://docs.python.org/3/library/constants.html#None] or str [https://docs.python.org/3/library/stdtypes.html#str], optional) – The output root directory under which to store the fits. If None the default is 'out'

	redo (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False the directory will not be created if it already exists, and an error is raised

	resume (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If False the directory will not be created if it already exists, and an error is raised

	nocreate (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True then creation of output directories is not even attempted

	Returns

	
	objname (str) – The human readable object name based on the spectrum

	dirname (str) – The output directory name created if successful

See also

make_outdirs()

	
WDmodel.io.write_fit_inputs(spec, phot, cont_model, linedata, continuumdata, rvmodel, covtype, coveps, phot_dispersion, scale_factor, outfile)

	Save all the inputs to the fitter to a file

This file is enough to resume the fit with the same input, redoing the
output, or restoring from a failure.

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	phot (None or numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – None or the photometry with dtype=[('pb', 'str'), ('mag', '<f8'), ('mag_err', '<f8')]

	cont_model (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The continuuum model. Must have the same structure as spec.
Produced by WDmodel.fit.pre_process_spectrum().
Used by WDmodel.viz

	linedata (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The observations of the spectrum corresponding to the hydrogen Balmer
lines. Must have dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8'), ('line_mask', 'i4')]
Produced by WDmodel.fit.pre_process_spectrum()
Used by WDmodel.viz

	continuumdata (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – Data used to generate the continuum model. Must have the same structure
as spec. Produced by WDmodel.fit.pre_process_spectrum()

	rvmodel ({'ccm89','od94','f99', 'custom'}) – Parametrization of the reddening law. Used to initialize
WDmodel.WDmodel.WDmodel() instance.

	covtype ({'Matern32', 'SHO', 'Exp', 'White'}) – stationary kernel type used to parametrize the covariance in
WDmodel.covariance.WDmodel_CovModel

	coveps (float [https://docs.python.org/3/library/functions.html#float]) – If covtype is 'Matern32' a
celerite.terms.Matern32Term [https://celerite.readthedocs.io/en/stable/python/kernel/#celerite.terms.Matern32Term] is used to approximate a
Matern32 kernel with precision coveps.

	phot_dispersion (float [https://docs.python.org/3/library/functions.html#float], optional) – Excess photometric dispersion to add in quadrature with the
photometric uncertainties phot.mag_err in
WDmodel.likelihood.WDmodel_Likelihood.

	scale_factor (float [https://docs.python.org/3/library/functions.html#float]) – Factor by which the flux must be scaled. Critical to getting the right
uncertainties.

	outfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output HDF5 filename

Notes

	The outputs are stored in a HDF5 file with groups

	
	spec - storing the spectrum and scale_factor

	cont_model - stores the continuum model

	linedata - stores the hydrogen Balmer line data

	continuumdata - stores the data used to generate cont_model

	fit_config - stores covtype, coveps and rvmodel as attributes

	phot - only created if phot is not None, stores phot, phot_dispersion

	
WDmodel.io.write_full_model(full_model, outfile)

	Write the full SED model to an output file.

	Parameters

	
	full_model (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The SED model with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	outfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output HDF5 SED model filename

Notes

	The output is written into a group model with datasets

	
	wave : array-like - the SED model wavelength

	flux : array-like - the SED model flux

	flux_err : array-like - the SED model flux uncertainty

	
WDmodel.io.write_params(params, outfile)

	Dumps the parameter dictionary params to a JSON file

	Parameters

	
	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A parameter dict such as that produced by
WDmodel.io.read_params()

	outfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output filename to save the parameter dict as a JSON file.

Notes

params is a dict the parameter names, as defined with
WDmodel.io._PARAMETER_NAMES as keys

	Each key must have a dictionary with keys:

	
	value : value

	fixed : a bool specifying if the parameter is fixed (True) or allowed to vary (False)

	scale : a scale parameter used to set the step size in this dimension

	bounds : An upper and lower limit on parameter values

Any extra keys are simply written as-is JSON doesn’t preserve ordering
necessarily. This is imposed by WDmodel.io.read_params()

See also

WDmodel.io.read_params()

	
WDmodel.io.write_phot_model(phot, model_mags, outfile)

	Write the photometry, model photometry and residuals to an output file.

	Parameters

	
	phot (None or numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – None or the photometry with dtype=[('pb', 'str'), ('mag', '<f8'), ('mag_err', '<f8')]

	model_mags (None or numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The model magnitudes.
Has dtype=[('pb', 'str'), ('mag', '<f8')]

	outfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output space-separated text filename

Notes

The data is saved to a space-separated ASCII text file with 6 decimal
places of precision.

	The order of the columns is

	
	pb : array-like - the observation’s passband

	mag : array-like - the observed magnitude

	mag_err : array-like - the observed magnitude uncertainty

	model_mag : array-like - the model magnitude

	res_mag : array-like - the magnitude residual

	
WDmodel.io.write_spectrum_model(spec, model_spec, outfile)

	Write the spectrum and the model spectrum and residuals to an output file.

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	model_spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The model spectrum.
Has dtype=[('wave', '<f8'), ('flux', '<f8'), ('norm_flux', '<f8'), ('flux_err', '<f8')]

	outfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output space-separated text filename

Notes

The data is saved to a space-separated ASCII text file with 8 decimal
places of precision.

	The order of the columns is

	
	wave : array-like - the spectrum wavelength

	flux : array-like - the observed flux

	flux_err : array-like - the observed flux uncertainty

	norm_flux : array-like - the model flux without the Gaussian process covariance model

	model_flux : array-like - the model flux

	model_flux_err : array-like - the model flux uncertainty

	res_flux : array-like - the flux residual

WDmodel.likelihood module

Classes defining the likelihood and the posterior probability of the model
given the data

	
class WDmodel.likelihood.WDmodel_Posterior(spec, phot, model, covmodel, pbs, lnlike, pixel_scale=1.0, phot_dispersion=0.0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Classes defining the posterior probability of the model given the data

An instance of this class is used to store the data and model, and evaluate
the likelihood and prior to compute the posterior.

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	phot (None or numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The photometry with dtype=[('pb', 'str'), ('mag', '<f8'), ('mag_err', '<f8')]

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	covmodel (WDmodel.covariance.WDmodel_CovModel instance) – The parametrized model for the covariance of the spectrum spec

	pbs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Passband dictionary containing the passbands corresponding to
phot.pb and generated by WDmodel.passband.get_pbmodel().

	lnlike (WDmodel_Likelihood instance) – Instance of the likelihood function class, such as that produced by
WDmodel.likelihood.setup_likelihood()

	pixel_scale (float [https://docs.python.org/3/library/functions.html#float], optional) – Jacobian of the transformation between wavelength in Angstrom and
pixels. In principle, this should be a vector, but virtually all
spectral reduction packages resample the spectrum onto a uniform
wavelength scale that is close to the native pixel scale of the
spectrograph. Default is 1.

	phot_dispersion (float [https://docs.python.org/3/library/functions.html#float], optional) – Excess photometric dispersion to add in quadrature with the
photometric uncertainties phot.mag_err. Use if the errors are
grossly underestimated. Default is 0.

	
spec

	The spectrum with dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	Type

	numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]

	
wave_scale

	length of the wavelength array wave in Angstroms

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
phot

	The photometry with dtype=[('pb', 'str'), ('mag', '<f8'), ('mag_err', '<f8')]

	Type

	None or numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]

	
model

	The DA White Dwarf SED model generator

	Type

	WDmodel.WDmodel.WDmodel instance

	
covmodel

	The parametrized model for the covariance of the spectrum spec

	Type

	WDmodel.covariance.WDmodel_CovModel instance

	
pbs

	Passband dictionary containing the passbands corresponding to
phot.pb and generated by WDmodel.passband.get_pbmodel().

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
_lnlike

	Instance of the likelihood function class, such as that produced by
WDmodel.likelihood.setup_likelihood()

	Type

	WDmodel_Likelihood instance

	
pixel_scale

	Jacobian of the transformation between wavelength in Angstrom and
pixels. In principle, this should be a vector, but virtually all
spectral reduction packages resample the spectrum onto a uniform
wavelength scale that is close to the native pixel scale of the
spectrograph. Default is 1.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
phot_dispersion

	Excess photometric dispersion to add in quadrature with the
photometric uncertainties phot.mag_err. Use if the errors are
grossly underestimated. Default is 0.

	Type

	float [https://docs.python.org/3/library/functions.html#float], optional

	
p0

	initial values of all the model parameters, including fixed parameters

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns

	lnpost – It is this instance that is passed to the samplers/optimizers in the
WDmodel.fit module. Those methods evaluate the posterior
probability of the model parameters given the data.

	Return type

	WDmodel_Posterior instance

Notes

Wraps celerite.modeling.Model.log_prior() [https://celerite.readthedocs.io/en/stable/python/modeling/#celerite.modeling.Model.log_prior] which imposes a
boundscheck and returns -inf. This is not an issue as
the samplers used in the methods in WDmodel.fit.

	
__call__(theta, prior=False, likelihood=False)

	Evalulates the log posterior of the model parameters given the data

	Parameters

	
	theta (array-like) – Vector of the non-frozen model parameters. The order of the
parameters is defined by
WDmodel_Likelihood.parameter_names.

	prior (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Only return the value of the log prior given the model parameters

	likelihood (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Only return the value of the log likelihood given the model
parameters if the prior is finite

	Returns

	lnpost – the log posterior of the model parameters given the data

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
__init__(spec, phot, model, covmodel, pbs, lnlike, pixel_scale=1.0, phot_dispersion=0.0)

	x.__init__(…) initializes x; see help(type(x)) for signature

	
_lnprior()

	Evalulates the log likelihood of the model parameters given the data.

Implements an lnprior function which imposes weakly informative priors
on the model parameters.

	Parameters

	theta (array-like) – Vector of the non-frozen model parameters. The order of the
parameters is defined by
WDmodel_Likelihood.parameter_names.

	Returns

	lnprior – the log likelihood of the model parameters given the data

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Notes

The prior on av is the ‘glos’ prior

The prior on rv is a Gaussian with mean 3.1 and standard
deviation 0.18. This is adopted from Schlafly et al., 2014 PS1
analysis. Note that they report 3.31, but they aren’t really
measuring E(B-V) with PS1. Their sigma should be consistent despite
the different filter set.

The prior on fsig and fw - the fractional amplitudes of the
non-trivial stationary and white components of the kernel used to
parametrize the covariance is half-Cauchy since we don’t want it to
be less than zero

There is no explicit prior on tau i.e. a tophat prior, defined
by the bounds

The fwhm has a lower bound set at the value below which the
spectrum isn’t being convolved anymore. We never run into this
bound since real spectra have physical instrumental broadening.
This prevents fwhm from going to zero for fitting poorly
simulated spectra generated from simply resampling the model grid.

The prior on all other parameters are broad Gaussians

Wraps celerite.modeling.Model.log_prior() [https://celerite.readthedocs.io/en/stable/python/modeling/#celerite.modeling.Model.log_prior] which imposes a
boundscheck and returns -inf. This is not an issue as the
samplers used in the methods in WDmodel.fit.

	
lnlike(theta)

	Evalulates the log likelihood of the model parameters given the data.

Convenience function that can return the value of the likelihood even
if the prior is not finite unlike
WDmodel_Posterior.__call__() for debugging.

	Parameters

	theta (array-like) – Vector of the non-frozen model parameters. The order of the
parameters is defined by
WDmodel_Likelihood.parameter_names.

	Returns

	lnlike – the log likelihood of the model parameters given the data

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
lnprior(theta)

	Evalulates the log prior of the model parameters.

Convenience function that can return the value of the prior defined to
make the interface consistent with the
WDmodel_Posterior.lnlike() method. Just a thin wrapper around
WDmodel_Posterior._lnprior() which is what is actually
evalulated by WDmodel_Posterior.__call__().

	Parameters

	theta (array-like) – Vector of the non-frozen model parameters. The order of the
parameters is defined by
WDmodel_Likelihood.parameter_names.

	Returns

	lnprior – the log prior of the model parameters

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
WDmodel.likelihood.setup_likelihood(params)

	Setup the form of the likelihood of the data given the model.

	Parameters

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A parameter dictionary used to configure the
WDmodel_Likelihood instance. The format of the dict is
defined by WDmodel.io.read_params().

	Returns

	lnlike – An instance of the likelihood function class.

	Return type

	WDmodel.likelihood.WDmodel_Likelihood

WDmodel.main module

The WDmodel package is designed to infer the SED of DA white dwarfs given
spectra and photometry. This main module wraps all the other modules, and their
classes and methods to implement the alogrithm.

	
WDmodel.main.main(inargs=None)

	Entry point for the WDmodel fitter package.

	Parameters

	inargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Input arguments to configure the fit. If not specified
sys.argv [https://docs.python.org/3/library/sys.html#sys.argv] is used. inargs must be parseable by
WDmodel.io.get_options().

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If user attempts to resume the fit without having run it first

Notes

The package is structured into several modules and classes

	Module

	Model Component

	WDmodel.io

	I/O methods

	WDmodel.WDmodel.WDmodel

	SED generator

	WDmodel.passband

	Throughput model

	WDmodel.covariance.WDmodel_CovModel

	Noise model

	WDmodel.likelihood.WDmodel_Likelihood

	Likelihood function

	WDmodel.likelihood.WDmodel_Posterior

	Posterior function

	WDmodel.fit

	“Fitting” methods

	WDmodel.viz

	Viz methods

This method implements our algorithm to infer the DA White Dwarf properties
and construct the SED model given the data using the methods and classes
listed above. Once the data is read, the model is configured, and the
liklihood and posterior functions constructed, the fitter methods evaluate
the model parameters given the data, using the samplers in emcee [https://emcee.readthedocs.io/en/stable/user/quickstart.html#module-emcee].
WDmodel.mossampler provides an overloaded
emcee.PTSampler [https://emcee.readthedocs.io/en/stable/api.html#emcee.PTSampler] with a more reliable auto-correlation estimate.
Finally, the result is output along with various plots.

	
WDmodel.main.mpi_excepthook(excepttype, exceptvalue, traceback)

	Overload sys.excepthook() [https://docs.python.org/3/library/sys.html#sys.excepthook] when using mpi4py.MPI to
terminate all MPI processes when an Exception is raised.

WDmodel.mossampler module

Overridden PTSampler with random Gibbs selection, more-reliable acor.

Original Author: James Guillochon for the mosfit package [https://github.com/guillochon/MOSFiT]

Modified to update kwargs, docstrings for full compatibility with PTSampler by G. Narayan

WDmodel.passband module

Instrumental throughput models and calibration and synthetic photometry
routines

	
WDmodel.passband.chop_syn_spec_pb(spec, model_mag, pb, model)

	Trims the pysynphot bandpass pb to non-zero throughput, computes the
zeropoint of the passband given the SED spec, and model magnitude of spec
in the passband

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum. Typically a standard which has a known model_mag.
This can be a real source such as Vega, BD+174708, or one of the three
CALSPEC standards, or an idealized synthetic source such as AB.
Must have dtype=[('wave', '<f8'), ('flux', '<f8')]

	model_mag (float [https://docs.python.org/3/library/functions.html#float]) – The apparent magnitude of the spectrum through the passband. The
difference between the apparent magnitude and the synthetic magnitude
is the synthetic zeropoint.

	pb (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The passband transmission.
Must have dtype=[('wave', '<f8'), ('throughput', '<f8')]

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	Returns

	
	outpb (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The passband transmission with zero throughput entries trimmed.
Has dtype=[('wave', '<f8'), ('throughput', '<f8')]

	outzp (float) – The synthetic zeropoint of the passband pb such that the source
with spectrum spec will have apparent magnitude model_mag
through pb. With the synthetic zeropoint computed, the synthetic
magnitude of any source can be converted into an apparent magnitude and
can be passed to WDmodel.passband.synphot().

See also

WDmodel.passband.interp_passband()
WDmodel.passband.synphot()

	
WDmodel.passband.get_model_synmags(model_spec, pbs, mu=0.0)

	Computes the synthetic magnitudes of spectrum model_spec through the
passbands pbs, and optionally applies a common offset, mu

Wrapper around WDmodel.passband.synphot().

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum.
Must have dtype=[('wave', '<f8'), ('flux', '<f8')]

	pbs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Passband dictionary containing the passbands corresponding to
phot.pb` and generated by WDmodel.passband.get_pbmodel().

	mu (float [https://docs.python.org/3/library/functions.html#float], optional) – Common achromatic photometric offset to apply to the synthetic
magnitudes in al the passbands. Would be equal to the distance modulus
if model_spec were normalized to return the true absolute magnitude
of the source.

	Returns

	model_mags – The model magnitudes.
Has dtype=[('pb', 'str'), ('mag', '<f8')]

	Return type

	None or numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]

	
WDmodel.passband.get_pbmodel(pbnames, model, pbfile=None, mag_type=None, mag_zero=0.0)

	Converts passband names pbnames into passband models based on the
mapping of name to pysynphot obsmode strings in pbfile.

	Parameters

	
	pbnames (array-like) – List of passband names to get throughput models for Each name is
resolved by first looking in pbfile (if provided) If an entry is
found, that entry is treated as an obsmode for pysynphot. If the
entry cannot be treated as an obsmode, we attempt to treat as an
ASCII file. If neither is possible, an error is raised.

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator
All the passbands are interpolated onto the wavelengths of the SED
model.

	pbfile (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Filename containing mapping between pbnames and pysynphot
obsmode string, as well as the standard that has 0 magnitude in the
system (either ‘’Vega’’ or ‘’AB’‘). The obsmode may also be the
fullpath to a file that is readable by pysynphot

	mag_type (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – One of ‘’vegamag’’ or ‘’abmag’’
Used to specify the standard that has mag_zero magnitude in the passband.
If magsys is specified in pbfile, that overrides this option.
Must be the same for all passbands listed in pbname that do not
have magsys specified in pbfile
If pbnames require multiple mag_type, concatentate the output.

	mag_zero (float [https://docs.python.org/3/library/functions.html#float], optional) – Magnitude of the standard in the passband
If magzero is specified in pbfile, that overrides this option.
Must be the same for all passbands listed in pbname that do not
have magzero specified in pbfile
If pbnames require multiple mag_zero, concatentate the output.

	Returns

	out – Output passband model dictionary. Has passband name pb from pbnames as key.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – If a bandpass cannot be loaded

Notes

	Each item of out is a tuple with

	
	pb : (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray])
The passband transmission with zero throughput entries trimmed.
Has dtype=[('wave', '<f8'), ('throughput', '<f8')]

	transmission : (array-like)
The non-zero passband transmission interpolated onto overlapping model wavelengths

	ind : (array-like)
Indices of model wavelength that overlap with this passband

	zp : (float)
mag_type zeropoint of this passband

	avgwave : (float)
Passband average/reference wavelength

pbfile must be readable by WDmodel.io.read_pbmap() and
must return a numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]
with``dtype=[(‘pb’, ‘str’),(‘obsmode’, ‘str’)]``

If there is no entry in pbfile for a passband, then we attempt to
use the passband name pb as obsmode string as is.

Trims the bandpass to entries with non-zero transmission and determines
the VEGAMAG/ABMAG zeropoint for the passband - i.e. zp that
gives mag_Vega/AB=mag_zero in all passbands.

See also

WDmodel.io.read_pbmap()
WDmodel.passband.chop_syn_spec_pb()

	
WDmodel.passband.interp_passband(wave, pb, model)

	Find the indices of the wavelength array wave, that overlap with the
passband pb and interpolates the passband onto the wavelengths.

	Parameters

	
	wave (array-like) – The wavelength array. Must satisfy
WDmodel.WDmodel.WDmodel._wave_test()

	pb (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The passband transmission.
Must have dtype=[('wave', '<f8'), ('throughput', '<f8')]

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	Returns

	
	transmission (array-like) – The transmission of the passband interpolated on to overlapping
elements of wave

	ind (array-like) – Indices of wavelength wave that overlap with the passband pb.
Produced by WDmodel.WDmodel.WDmodel._get_indices_in_range()
Satisfies transmission.shape == wave[ind].shape

Notes

The passband pb is interpolated on to the wavelength arrray
wave. wave is typically the wavelengths of a spectrum, and have
much better sampling than passband transmission curves. Only the
wavelengths wave that overlap the passband are taken, and the
passband transmission is then linearly interpolated on to these
wavelengths. This prescription has been checked against
pysynphot to return synthetic magnitudes that agree to be <
1E-6, while WDmodel.passband.synphot() is very significantly
faster than pysynphot.observation.Observation.effstim() [https://pysynphot.readthedocs.io/en/latest/ref_api.html#pysynphot.observation.Observation.effstim].

	
WDmodel.passband.synflux(spec, ind, pb)

	Compute the synthetic flux of spectrum spec through passband pb

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum.
Must have dtype=[('wave', '<f8'), ('flux', '<f8')]

	ind (array-like) – Indices of spectrum spec that overlap with the passband pb.
Can be produced by WDmodel.passband.interp_passband()

	pb (array-like) – The passband transmission.
Must satisfy pb.shape == spec[ind].flux.shape

	Returns

	flux – The normalized flux of the spectrum through the passband

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Notes

The passband is assumed to be dimensionless photon transmission
efficiency.

Routine is intended to be a mch faster implementation of
pysynphot.observation.Observation.effstim() [https://pysynphot.readthedocs.io/en/latest/ref_api.html#pysynphot.observation.Observation.effstim], since it is called over and
over by the samplers as a function of model parameters.

Uses numpy.trapz() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.trapz.html#numpy.trapz] for interpolation.

See also

WDmodel.passband.interp_passband()

	
WDmodel.passband.synphot(spec, ind, pb, zp=0.0)

	Compute the synthetic magnitude of spectrum spec through passband pb

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum.
Must have dtype=[('wave', '<f8'), ('flux', '<f8')]

	ind (array-like) – Indices of spectrum spec that overlap with the passband pb.
Can be produced by WDmodel.passband.interp_passband()

	pb (array-like) – The passband transmission.
Must satisfy pb.shape == spec[ind].flux.shape

	zp (float [https://docs.python.org/3/library/functions.html#float], optional) – The zeropoint to apply to the synthetic flux

	Returns

	mag – The synthetic magnitude of the spectrum through the passband

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

See also

WDmodel.passband.synflux()
WDmodel.passband.interp_passband()

WDmodel.viz module

Routines to visualize the DA White Dwarf model atmosphere fit

	
WDmodel.viz.plot_mcmc_line_fit(spec, linedata, model, cont_model, draws, balmer=None)

	Plot a comparison of the normalized hydrogen Balmer lines of the spectrum
and model

Note that we fit the full spectrum, not just the lines. The lines are
extracted using a coarse continuum fit in
WDmodel.fit.pre_process_spectrum(). This fit is purely cosmetic
and in no way contributes to the likelihood. It’s particularly useful to
detect small velocity offsets or wavelength calibration errors.

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum. Must have
dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	linedata (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The observations of the spectrum corresponding to the hydrogen Balmer
lines. Must have
dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8'), ('line_mask', 'i4'), ('line_ind', 'i4')]

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	cont_model (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The continuuum model. Must have the same structure as spec
Produced by WDmodel.fit.pre_process_spectrum()

	draws (array-like) – produced by plot_mcmc_spectrum_fit() - see notes for content.

	balmer (array-like, optional) – list of Balmer lines to plot - elements must be in range [1, 6]
These correspond to the lines defined in
WDmodel.WDmodel.WDmodel._lines. Default is range(1, 7)

	Returns

	
	fig (matplotlib.figure.Figure [https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure] instance) – The output figure containing the line profile plot

	fig2 (matplotlib.figure.Figure [https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure] instance) – The output figure containing histograms of the line residuals

See also

WDmodel.viz.plot_mcmc_spectrum_fit()

	
WDmodel.viz.plot_mcmc_model(spec, phot, linedata, scale_factor, phot_dispersion, objname, outdir, specfile, model, covmodel, cont_model, pbs, params, param_names, samples, samples_lnprob, covtype=u'Matern32', balmer=None, ndraws=21, everyn=1, savefig=False)

	Make all the plots to visualize the full fit of the DA White Dwarf data

Wraps plot_mcmc_spectrum_fit(),
plot_mcmc_photometry_res(),
plot_mcmc_spectrum_nogp_fit(), plot_mcmc_line_fit() and
corner.corner() [https://corner.readthedocs.io/en/stable/api.html#corner.corner] and saves all the plots to a combined PDF, and
optionally individual PDFs.

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum. Must have
dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	phot (None or numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The photometry. Must have
dtype=[('pb', 'str'), ('mag', '<f8'), ('mag_err', '<f8')]

	linedata (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The observations of the spectrum corresponding to the hydrogen Balmer
lines. Must have
dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8'), ('line_mask', 'i4'), ('line_ind', 'i4')]

	scale_factor (float [https://docs.python.org/3/library/functions.html#float]) – factor by which the flux was scaled for y-axis label

	phot_dispersion (float [https://docs.python.org/3/library/functions.html#float], optional) – Excess photometric dispersion to add in quadrature with the
photometric uncertainties phot.mag_err. Use if the errors are
grossly underestimated. Default is 0.

	objname (str [https://docs.python.org/3/library/stdtypes.html#str]) – object name - used to title plots

	outdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – controls where the plot is written out if savefig=True

	specfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Used in the title, and to set the name of the outfile if savefig=True

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	covmodel (WDmodel.covariance.WDmodel_CovModel instance) – The parametrized model for the covariance of the spectrum spec

	cont_model (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The continuuum model. Must have the same structure as spec
Produced by WDmodel.fit.pre_process_spectrum()

	pbs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Passband dictionary containing the passbands corresponding to
phot.pb and generated by WDmodel.passband.get_pbmodel().

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of parameters with keywords value, fixed, scale,
bounds for each. Same format as returned from
WDmodel.io.read_params()

	param_names (array-like) – Ordered list of free parameter names

	samples (array-like) – Samples from the flattened Markov Chain with shape (N, len(param_names))

	samples_lnprob (array-like) – Log Posterior corresponding to samples from the flattened Markov
Chain with shape (N,)

	covtype ({'Matern32', 'SHO', 'Exp', 'White'}) – stationary kernel type used to parametrize the covariance in
WDmodel.covariance.WDmodel_CovModel

	balmer (array-like, optional) – list of Balmer lines to plot - elements must be in range [1, 6]
These correspond to the lines defined in
WDmodel.WDmodel.WDmodel._lines. Default is range(1, 7)

	ndraws (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of draws to make from the Markov Chain to overplot. Higher
numbers provide a better sense of the uncertainty in the model at the
cost of speed and a larger, slower to render output plot.

	everyn (int [https://docs.python.org/3/library/functions.html#int], optional) – If the posterior function was evaluated using only every nth
observation from the data, this should be specified to visually
indicate the observations used.

	savefig (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, save the individual figures

	Returns

	
	model_spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The model spectrum. Has
dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8'), ('norm_flux', '<f8')]
and same shape as input spec. The norm_flux attribute has the
model flux without the Gaussian process prediction applied.

	SED_model (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The SED model spectrum. Has
dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	model_mags (None or numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – If there is observed photometry, this contains the model magnitudes.
Has dtype=[('pb', 'str'), ('mag', '<f8')]

	
WDmodel.viz.plot_mcmc_photometry_res(objname, phot, phot_dispersion, model, pbs, draws)

	Plot the observed DA white dwarf photometry as well as the “best-fit” model
magnitudes

	Parameters

	
	objname (str [https://docs.python.org/3/library/stdtypes.html#str]) – object name - used to title plots

	phot (None or numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The photometry. Must have
dtype=[('pb', 'str'), ('mag', '<f8'), ('mag_err', '<f8')]

	phot_dispersion (float [https://docs.python.org/3/library/functions.html#float], optional) – Excess photometric dispersion to add in quadrature with the
photometric uncertainties phot.mag_err. Use if the errors are
grossly underestimated. Default is 0.

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	pbs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Passband dictionary containing the passbands corresponding to
phot.pb and generated by WDmodel.passband.get_pbmodel().

	draws (array-like) – produced by plot_mcmc_spectrum_fit() - see notes for content.

	Returns

	
	fig (matplotlib.figure.Figure [https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure] instance) – The output figure

	mag_draws (array-like) – The magnitudes corresponding to the parameters draws from the Markov
Chain used in fig

Notes

	Each element of mag_draws contains

	
	wres - the difference between the observed and synthetic magnitudes

	model_mags - the model magnitudes corresponding to the current model parameters

	mu - the flux normalization parameter that must be added to the model_mags

See also

WDmodel.viz.plot_mcmc_spectrum_fit()

	
WDmodel.viz.plot_mcmc_spectrum_fit(spec, objname, specfile, scale_factor, model, covmodel, result, param_names, samples, ndraws=21, everyn=1)

	Plot the spectrum of the DA White Dwarf and the “best fit” model

The full fit parametrizes the covariance model using a stationary Gaussian
process as defined by WDmodel.covariance.WDmodel_CovModel. The
posterior function constructed in
WDmodel.likelihood.WDmodel_Posterior is evaluated by the
sampler in the WDmodel.fit.fit_model() method. The median value is
reported as the best-fit value for each of the fit parameters in
WDmodel.likelihood.WDmodel_Likelihood.parameter_names.

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum. Must have
dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	objname (str [https://docs.python.org/3/library/stdtypes.html#str]) – object name - used to title plots

	outdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – controls where the plot is written out if save=True

	specfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Used in the title, and to set the name of the outfile if save=True

	scale_factor (float [https://docs.python.org/3/library/functions.html#float]) – factor by which the flux was scaled for y-axis label

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	covmodel (WDmodel.covariance.WDmodel_CovModel instance) – The parametrized model for the covariance of the spectrum spec

	result (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of parameters with keywords value, fixed, scale,
bounds for each. Same format as returned from
WDmodel.io.read_params()

	param_names (array-like) – Ordered list of free parameter names

	samples (array-like) – Samples from the flattened Markov Chain with shape (N, len(param_names))

	ndraws (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of draws to make from the Markov Chain to overplot. Higher
numbers provide a better sense of the uncertainty in the model at the
cost of speed and a larger, slower to render output plot.

	everyn (int [https://docs.python.org/3/library/functions.html#int], optional) – If the posterior function was evaluated using only every nth
observation from the data, this should be specified to visually
indicate the observations used.

	Returns

	
	fig (matplotlib.figure.Figure [https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure] instance) – The output figure

	draws (array-like) – The actual draws from the Markov Chain used in fig

Notes

It’s faster to draw samples from the posterior in one location, and
pass along the same samples to all the methods in WDmodel.viz.

Consequently, most require draws as an input. This makes all the
plots connected, and none will return if an error is thrown here, but
this is the correct behavior as all of them are visualizing one aspect
of the same fit.

	Each element of draws contains

	
	smoothedmod - the model spectrum

	wres - the prediction from the Gaussian process

	wres_err - the diagonal of the covariance matrix for the prediction from the Gaussian process

	full_mod - the full model SED, in order to compute the synthetic photometry

	out_draw - the dictionary of model parameters from this draw. Same format as result.

	
WDmodel.viz.plot_mcmc_spectrum_nogp_fit(spec, objname, specfile, scale_factor, cont_model, draws, covtype=u'Matern32', everyn=1)

	Plot the spectrum of the DA White Dwarf and the “best fit” model without
the Gaussian process

Unlike plot_mcmc_spectrum_fit() this version does not apply the
prediction from the Gaussian process to the spectrum model to match the
observed spectrum. This visualization is useful to indicate if the Gaussian
process - i.e. the kernel choice covtype used to parametrize the
covariance is - is appropriate.

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum. Must have
dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	objname (str [https://docs.python.org/3/library/stdtypes.html#str]) – object name - used to title plots

	outdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – controls where the plot is written out if save=True

	specfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Used in the title, and to set the name of the outfile if save=True

	scale_factor (float [https://docs.python.org/3/library/functions.html#float]) – factor by which the flux was scaled for y-axis label

	cont_model (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The continuuum model. Must have the same structure as spec
Produced by WDmodel.fit.pre_process_spectrum()

	draws (array-like) – produced by plot_mcmc_spectrum_fit() - see notes for content.

	covtype ({'Matern32', 'SHO', 'Exp', 'White'}) – stationary kernel type used to parametrize the covariance in
WDmodel.covariance.WDmodel_CovModel

	everyn (int [https://docs.python.org/3/library/functions.html#int], optional) – If the posterior function was evaluated using only every nth
observation from the data, this should be specified to visually
indicate the observations used.

	Returns

	fig – The output figure

	Return type

	matplotlib.figure.Figure [https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure] instance

See also

WDmodel.viz.plot_mcmc_spectrum_fit()

	
WDmodel.viz.plot_minuit_spectrum_fit(spec, objname, outdir, specfile, scale_factor, model, result, save=True)

	Plot the MLE fit of the spectrum with the model, assuming uncorrelated
noise.

	Parameters

	
	spec (numpy.recarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.html#numpy.recarray]) – The spectrum. Must have
dtype=[('wave', '<f8'), ('flux', '<f8'), ('flux_err', '<f8')]

	objname (str [https://docs.python.org/3/library/stdtypes.html#str]) – object name - used to title plots

	outdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – controls where the plot is written out if save=True

	specfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – Used in the title, and to set the name of the outfile if save=True

	scale_factor (float [https://docs.python.org/3/library/functions.html#float]) – factor by which the flux was scaled for y-axis label

	model (WDmodel.WDmodel.WDmodel instance) – The DA White Dwarf SED model generator

	result (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – dictionary of parameters with keywords value, fixed, scale,
bounds for each. Same format as returned from
WDmodel.io.read_params()

	save (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, save the file

	Returns

	fig

	Return type

	matplotlib.figure.Figure [https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure] instance

Notes

The MLE fit uses iminuit.Minuit.migrad() [https://iminuit.readthedocs.io/en/stable/api.html#iminuit.Minuit.migrad] to fit the spectrum
with the model. This fit doesn’t try to account for the covariance in
the data, and is not expected to be great - just fast, and capable of
setting a reasonable initial guess. If it is apparent from the plot
that this fit is very far off, refine the initial guess to the fitter.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 WDmodel	

 	
 	
 WDmodel.covariance	

 	
 	
 WDmodel.fit	

 	
 	
 WDmodel.io	

 	
 	
 WDmodel.likelihood	

 	
 	
 WDmodel.main	

 	
 	
 WDmodel.mossampler	

 	
 	
 WDmodel.passband	

 	
 	
 WDmodel.viz	

 	
 	
 WDmodel.WDmodel	

Index

 _
 | B
 | C
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | W

_

 	
 	__call__() (WDmodel.likelihood.WDmodel_Posterior method)

 	(WDmodel.WDmodel.WDmodel method)

 	__init__() (WDmodel.covariance.WDmodel_CovModel method)

 	(WDmodel.WDmodel.WDmodel method)

 	(WDmodel.likelihood.WDmodel_Posterior method)

 	_coveps (WDmodel.covariance.WDmodel_CovModel attribute)

 	_covtype (WDmodel.covariance.WDmodel_CovModel attribute)

 	_custom_extinction() (WDmodel.WDmodel.WDmodel method)

 	_errscale (WDmodel.covariance.WDmodel_CovModel attribute)

 	_extract_from_indices() (WDmodel.WDmodel.WDmodel method)

 	_extract_spectral_line() (WDmodel.WDmodel.WDmodel method)

 	_flux (WDmodel.WDmodel.WDmodel attribute)

 	_get_full_obs_model() (WDmodel.WDmodel.WDmodel method)

 	_get_indices_in_range() (WDmodel.WDmodel.WDmodel class method)

 	_get_line_indices() (WDmodel.WDmodel.WDmodel method)

 	_get_model() (WDmodel.WDmodel.WDmodel method)

 	_get_model_nosp() (WDmodel.WDmodel.WDmodel method)

 	_get_obs_model() (WDmodel.WDmodel.WDmodel method)

 	_get_red_model() (WDmodel.WDmodel.WDmodel method)

 	_ggrid (WDmodel.WDmodel.WDmodel attribute)

 	
 	_grid_file (WDmodel.WDmodel.WDmodel attribute)

 	_grid_name (WDmodel.WDmodel.WDmodel attribute)

 	_k1 (WDmodel.covariance.WDmodel_CovModel attribute)

 	_k2 (WDmodel.covariance.WDmodel_CovModel attribute)

 	_law (WDmodel.WDmodel.WDmodel attribute)

 	_lflux (WDmodel.WDmodel.WDmodel attribute)

 	_lines (WDmodel.WDmodel.WDmodel attribute)

 	_lnlike (WDmodel.likelihood.WDmodel_Posterior attribute)

 	_lnprior() (WDmodel.likelihood.WDmodel_Posterior method)

 	_logQ (WDmodel.covariance.WDmodel_CovModel attribute)

 	_lwave (WDmodel.WDmodel.WDmodel attribute)

 	_ndim (WDmodel.covariance.WDmodel_CovModel attribute)

 	_ngrav (WDmodel.WDmodel.WDmodel attribute)

 	_ntemp (WDmodel.WDmodel.WDmodel attribute)

 	_nwave (WDmodel.WDmodel.WDmodel attribute)

 	_read_ascii() (in module WDmodel.io)

 	_tgrid (WDmodel.WDmodel.WDmodel attribute)

 	_wave (WDmodel.WDmodel.WDmodel attribute)

 	_wave_test() (WDmodel.WDmodel.WDmodel class method)

 	_WDmodel__init__rvmodel() (WDmodel.WDmodel.WDmodel method)

 	_WDmodel__init__tlusty() (WDmodel.WDmodel.WDmodel method)

B

 	
 	blotch_spectrum() (in module WDmodel.fit)

C

 	
 	chop_syn_spec_pb() (in module WDmodel.passband)

 	
 	copy_params() (in module WDmodel.io)

 	covmodel (WDmodel.likelihood.WDmodel_Posterior attribute)

E

 	
 	extinction() (WDmodel.WDmodel.WDmodel method)

 	
 	extract_spectral_line() (WDmodel.WDmodel.WDmodel method)

F

 	
 	fit_model() (in module WDmodel.fit)

 	
 	fix_pos() (in module WDmodel.fit)

G

 	
 	get_filepath() (in module WDmodel.io)

 	get_fit_params_from_samples() (in module WDmodel.fit)

 	get_model() (WDmodel.WDmodel.WDmodel method)

 	get_model_synmags() (in module WDmodel.passband)

 	get_obs_model() (WDmodel.WDmodel.WDmodel method)

 	get_options() (in module WDmodel.io)

 	get_outfile() (in module WDmodel.io)

 	
 	get_params_from_argparse() (in module WDmodel.io)

 	get_pbmodel() (in module WDmodel.passband)

 	get_phot_for_obj() (in module WDmodel.io)

 	get_pkgfile() (in module WDmodel.io)

 	get_red_model() (WDmodel.WDmodel.WDmodel method)

 	get_spectrum_resolution() (in module WDmodel.io)

 	getgp() (WDmodel.covariance.WDmodel_CovModel method)

H

 	
 	hyper_param_guess() (in module WDmodel.fit)

I

 	
 	interp_passband() (in module WDmodel.passband)

L

 	
 	lnlike() (WDmodel.likelihood.WDmodel_Posterior method)

 	
 	lnlikelihood() (WDmodel.covariance.WDmodel_CovModel method)

 	lnprior() (WDmodel.likelihood.WDmodel_Posterior method)

M

 	
 	main() (in module WDmodel.main)

 	make_outdirs() (in module WDmodel.io)

 	
 	model (WDmodel.likelihood.WDmodel_Posterior attribute)

 	mpi_excepthook() (in module WDmodel.main)

O

 	
 	orig_cut_lines() (in module WDmodel.fit)

P

 	
 	p0 (WDmodel.likelihood.WDmodel_Posterior attribute)

 	pbs (WDmodel.likelihood.WDmodel_Posterior attribute)

 	phot (WDmodel.likelihood.WDmodel_Posterior attribute)

 	phot_dispersion (WDmodel.likelihood.WDmodel_Posterior attribute)

 	pixel_scale (WDmodel.likelihood.WDmodel_Posterior attribute)

 	plot_mcmc_line_fit() (in module WDmodel.viz)

 	plot_mcmc_model() (in module WDmodel.viz)

 	
 	plot_mcmc_photometry_res() (in module WDmodel.viz)

 	plot_mcmc_spectrum_fit() (in module WDmodel.viz)

 	plot_mcmc_spectrum_nogp_fit() (in module WDmodel.viz)

 	plot_minuit_spectrum_fit() (in module WDmodel.viz)

 	polyfit_continuum() (in module WDmodel.fit)

 	pre_process_spectrum() (in module WDmodel.fit)

 	predict() (WDmodel.covariance.WDmodel_CovModel method)

Q

 	
 	quick_fit_spec_model() (in module WDmodel.fit)

R

 	
 	read_fit_inputs() (in module WDmodel.io)

 	read_full_model() (in module WDmodel.io)

 	read_mcmc() (in module WDmodel.io)

 	read_model_grid() (in module WDmodel.io)

 	read_params() (in module WDmodel.io)

 	read_pbmap() (in module WDmodel.io)

 	
 	read_phot() (in module WDmodel.io)

 	read_reddening() (in module WDmodel.io)

 	read_spec() (in module WDmodel.io)

 	read_spectable() (in module WDmodel.io)

 	rebin_spec_by_int_factor() (in module WDmodel.fit)

 	reddening() (WDmodel.WDmodel.WDmodel method)

S

 	
 	set_objname_outdir_for_specfile() (in module WDmodel.io)

 	setup_likelihood() (in module WDmodel.likelihood)

 	
 	spec (WDmodel.likelihood.WDmodel_Posterior attribute)

 	synflux() (in module WDmodel.passband)

 	synphot() (in module WDmodel.passband)

W

 	
 	wave_scale (WDmodel.likelihood.WDmodel_Posterior attribute)

 	WDmodel (class in WDmodel.WDmodel)

 	(module), [1]

 	WDmodel.covariance (module)

 	WDmodel.fit (module)

 	WDmodel.io (module)

 	WDmodel.likelihood (module)

 	WDmodel.main (module)

 	WDmodel.mossampler (module)

 	
 	WDmodel.passband (module)

 	WDmodel.viz (module)

 	WDmodel.WDmodel (module)

 	WDmodel_CovModel (class in WDmodel.covariance)

 	WDmodel_Posterior (class in WDmodel.likelihood)

 	write_fit_inputs() (in module WDmodel.io)

 	write_full_model() (in module WDmodel.io)

 	write_params() (in module WDmodel.io)

 	write_phot_model() (in module WDmodel.io)

 	write_spectrum_model() (in module WDmodel.io)

 _static/up-pressed.png

_images/example_fit_balmerlines.png
Line Profiles

20

18

16

i3 pazyeLon

12

10

08

150

100

%0

ey

“ioo

Ziso

Delta Wavelength~(1A)

_images/example_fit_balmerlines_resids.png
Residual Distributions

Residuals o (6se2.06) eta (4861.35)
100 50 " 100
g £100 g
2 so 2 2 50
50
2 2
o o
o o8t o o FE N
Fit Residual Fux it Residual Flux. Fit Residual Flux
100 Jamma (434043 el 4101781 0 2eta (3970.08)
s o0
i
€ g0 £
2 so 240 2
20
2 20
o - o o
o o o o o o8 FE N S
Fit Residual Fux it Residual Flux. Fit Residual Flux
o < (3889 06)
30
3
220
10
i
oF oo

Fit Residual Fux

_static/up.png

_images/example_fit_spec.png
10

Normalized Flux (Scale factor = 1.0)

00

Fit Residual Flux

MCMC Fit: sdssj072752 (datajspectroscopy/mm/sdssj072752-20150124-total fim)

— tarspectoscopymmsdss|072752 20150126 201 i
ode!
S dsa30 111 41007 33512654043
15 2012170 148
St #8510
569 305 +122 543174 603
=383 1508 343
LA e ey
8 2 e 0 302

000 5000 6000 7000 8000

000 5000 6000 7000 8000
Wavelength~(AA)

_images/example_fit_spec_nogp.png
Fit Residual Flux

MCMC Fit - No Matern32 Covariance: sdssj072752 (data/spectroscopy/mmt/sdssj072752-20150124-total.fim)

Normalized Flux (Scale factor = 1.0)

— otarspectoscopymmsdss|072752 20150126 a1 i
= Continuum
10 " ode! - na covarance
L
08
06 \
04
02
00
000 5000 6000 7000 8000
005
000
000 5000 6000 7000 8000

Wavelength~(AA)

_images/example_fit_phot.png
Residual (mag)

Magnitude (Photometric dispersion = 0.001)

155

160

190

001

Photometry for sdssj072752

o Mode Magitudes

@ Onserved Magniudes

4000

8000

10000

Wavelength

12000

16000

001

R275W

F3sew

FaTsw

passband

Feasw

775w

Fleow

_images/example_fit_posterior.png
teff = 494301120734

logg = 7.79:33

av = 014188

di = 4967.3145335¢

fwhm = 5.842450

fwhm

fsig = 5,943

g

tau = 1515.2153352°

tau

fw= 0,073

"

mu = 58.69'383

-) A S e S SR S Y s & o > e o
SFEFSS PSP FIIEF P S SR D PSS PSS TS E S &

terr logg a a fwhm 59 tau e mu

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to WDmodel’s documentation!

 		
 Installation

 		
 Setting up an environment vs setting up a known good environment

 		
 Some extra notes on installation

 		
 Usage

 		
 Analysis

 		
 Package documentation

 		
 WDmodel package

 		
 WDmodel.WDmodel module

 		
 WDmodel.covariance module

 		
 WDmodel.fit module

 		
 WDmodel.io module

 		
 WDmodel.likelihood module

 		
 WDmodel.main module

 		
 WDmodel.mossampler module

 		
 WDmodel.passband module

 		
 WDmodel.viz module

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

